
Ontwerp van SoftwareSystemen

1 Introduction

Roel Wuyts
OSS 2012-2013

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

People

• Roel Wuyts

– URL: http://roelwuyts.be/

• Dries Vanoverberghe

– Dries.Vanoverberghe@cs.kuleuven.be

• Mario Henrique Cruz Torres

– mariohenrique.cruztorres@cs.kuleuven.be

• Marko van Dooren

– Marko.vanDooren@cs.kuleuven.be

2

Friday 28 September 12

mailto:Dries.Vanoverberghe@cs.kuleuven.be
mailto:Dries.Vanoverberghe@cs.kuleuven.be
mailto:mariohenrique.cruztorres@cs.kuleuven.be
mailto:mariohenrique.cruztorres@cs.kuleuven.be
mailto:Marko.vanDooren@cs.kuleuven.be
mailto:Marko.vanDooren@cs.kuleuven.be

Wuyts Roel
 imec restricted 2007

About me...

3

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Doelstellingen

“In deze cursus komt het ontwerpen van software
systemen aan bod. De nadruk ligt op objectgerichte
methodes. Een belangrijke doelstelling is het leren
nemen van ontwerpbeslissingen op een gefundeerde
manier, met het afwegen van voor- en nadelen van
verschillende oplossingen met betrekking tot de
analyse en vereisten, het ontwerp, de implementatie,
en de organisatie. Dit alles wordt toegepast in een
groepsproject dat uitbreidingen maakt op een niet-
triviale, en voor de studenten nieuwe, applicatie.”

4

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Begintermen

“Grondige kennis van een objectgerichte
programmeertaal en objectgeoriënteerde concepten.
Praktische vaardigheden bij het ontwikkelen van
programma's, i.c. het gebruik van een IDE
(integrated development environment) zoals Eclipse
en versiebeheer software zoals svn.”

5

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Inhoud Hoorcollege

• Overzicht van software ontwikkelingsprocessen.

• Objectgerichte analyse en ontwerp gebruikmakend
van de modeleertaal UML.

• Studie, evaluatie en gebruik van GRASP patronen en
van ontwerp patronen.

• Technieken voor het realiseren van kwalitatieve
objectgerichte ontwerpen en implementaties.

• Technieken voor het inschatten van de kwaliteit van
het ontwerp en de implementatie van software
systemen.

6

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Course Material

• Slides and links on the website of the course

 http://roelwuyts.be/OSS-1213/

• Material

– Applying UML and Patterns (3rd ed.), Craig Larman.

– Design Patterns: Elements of Reusable Object-Oriented
Software, E. Gamma, R. Helm, R. Johnson, J. Vlissides.

– Refactoring: Improving the Design of Existing Code, M.
Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts.

– "No Silver Bullet: Essence and Accident in Software
Engineering ", F.P. Brooks.

7

Friday 28 September 12

http://roelwuyts.be/OSS-1011/
http://roelwuyts.be/OSS-1011/
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Wuyts Roel
 imec restricted 2007

Project: applying the theory in practice

• Group Project

– Number of persons in a group not yet known!

• Three iterations:

1. Investigate and evaluate an existing implementation

 Analysis of an existing system

2. Extend it (Trade-offs!)

 Decide what to modify to realize the extension

3. Refactor it

 Clean up and realize a smaller extension

8

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Project Effort

• Effort of 90 hours / student.

• It is possible that you spend more or less !

– notify me in time of possible discrepancies

9

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Escalation Policy

• Groups do not always function smoothly

– But dealing with this is part of your education

• In case of problems:

– discuss within group.

– if it cannot be resolved: mail to your assistant (with
me in cc) to describe the problem.

– assistant may decide to involve me if necessary.

• In case of problems with assistant: contact me.

• In case of problems with me: contact MA1
responsible.

10

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Course grading: First session

• Project defense after iterations (grades P1,P2,P3)

• Individual defense after final iteration (grade I)

• Grading Algorithm:

If ∃ Pi <= 5, 1<=i<=3 : final grade = min(P1, P2, P3)

elif I <= 8: final grade = I

else final grade = (avg (P1, P2, P3) + I) / 2

• If we find large work discrepancies within a group,
specific grades for that group/person can be given

 0 is possible when not collaborating !

11

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Course grading: Second session

• Second session

– Continuing project individually

– Grade on project (P4) and project defense (I’)

• Grading algorithm from first session:

– lowest score replaced by P4

– I replaced with I’

12

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Project Defense

• Each of you gets questions and answers. Then other
group members can provide more information.

• Questions originate from your report, design and
implementation.

• You get two kinds of feedback:

– during the defense:our questions and comments

– right after the defense:

13

ok take
care

not
ok

Friday 28 September 12

Wuyts Roel
 imec restricted 2007 14

Grades

• 1st session:

– Final grade ≥ 10 : done!

– Final grade < 10 : redo in second session

• 2nd session:

– Final grade ≥ 10 : done!

– Final grade < 10 : credit not obtained

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Questions ?

15

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

About You

• Let’s do an interactive “quiz”

– there is no right or wrong for most of the questions
here; goal is for me to learn your reflexes when faced
with questions related to programming language,
design, or implementation.

16

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

• Is the following correct:

17

“A message sent to super is sent to the parent
of the object”

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

What is the result of the following expression?

class A {
	 public void m(A a) { System.out.println("1"); }
}

class B extends A {
	 public void m(B b) { System.out.println("2"); }
	 public void m(A a) { System.out.println("3"); }
}

B b = new B();
A a = b;
a.m(b);

18

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

What do you think of the following implementation?

 // Return null to signify end of file
 protected IToken fetchToken() throws EndOfFileException {
 ++count;
 while (bufferStackPos >= 0) {
 // Tokens don't span buffers, stick to our current one
 char[] buffer = bufferStack[bufferStackPos];
 int limit = bufferLimit[bufferStackPos];
 int pos = bufferPos[bufferStackPos];

 switch (buffer[pos]) {

 case '_':
 t = scanIdentifier();
 if (t instanceof MacroExpansionToken)
 continue;
 return t;

 case '#':
 if (pos + 1 < limit && buffer[pos + 1] == '#') {
 ++bufferPos[bufferStackPos];
 return newToken(IToken.tPOUNDPOUND);
 }

 // Should really check to make sure this is the first
 // non whitespace character on the line
 handlePPDirective(pos);
 continue;

…
(390 lines of code in total)

19

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Reuse versus hack

• Suppose you are responsible to add a new feature to
an existing piece of software. The design of the
existing software makes this hard. How do you
decide whether to rewrite the existing software or
whether to “hack in” the new feature ?

20

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Object-Oriented Software Design Question

• A restaurant menu consists of dishes, e.g. “Flemish
stew”, “Blood sausage with apples” and “Chicken
Royale with Champaign”. Each dish consists of a
number of ingredients and is either a starter, a main
course or a dessert. The menu shows for each dish
an authenticity score (1, 2 or 3), a calory score, as
well as the price. Menus need to be printed in a
variety of languages (dutch, french, english,
japanese, arabic; some left-to-right and some right-
to-left) and needs to be available on an interactive
website (where a picture is shown of the dish). The
menus change frequently with the seasons.

21

Friday 28 September 12

Wuyts Roel
 imec restricted 2007 22

Why Software Engineering?

• Problem Specification → Final Program

• But ...

– Where did the specification come from?
– How do you know the specification corresponds to the user’s

needs?
– How did you decide how to structure your program?
– How do you know the program actually meets the

specification?
– How do you know your program will always work correctly?
– What do you do if the users’ needs change?
– How do you divide tasks up if you have more than a one-

person team?

Friday 28 September 12

Wuyts Roel
 imec restricted 2007 23

What is Software Engineering? (I)

• Some Definitions and Issues

– “state of the art of developing quality software on time
and within budget”

• Trade-off between perfection and physical constraints

– Software engineering deals with real-world issues

• State of the art!

– Community decides on “best practice” + life-long
education

Friday 28 September 12

Wuyts Roel
 imec restricted 2007 24

What is Software Engineering? (II)

• “multi-person construction of multi-version software”

 " Parnas

• Team-work

– Scale issue (“program well” is not enough) +
Communication Issue

• Successful software systems must evolve or perish

– Change is the norm, not the exception

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Communication and Modeling

• Team-effort requires communication

• Results have to be communicated externally

25

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

UML

• Unified Modeling Language

• De-facto standard that I expect everybody to know
and follow

– working knowledge of at least the use case, class,
sequence and communication diagrams

– use throughout course (theory, practice, project)

• Self-study

– I give a short overview

– You do the study

– There will be a practice session

26

Friday 28 September 12

Wuyts Roel
 imec restricted 2007 27

General Goals of UML

• Model systems using OO concepts

• Establish an explicit coupling to conceptual as well as
executable artifacts

• To create a modeling language usable by both
humans and machines

• Models different types of systems (information
systems, technical systems, embedded systems,
real-time systems, distributed systems, system
software, business systems, UML itself, ...)

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

11 diagrams in UML 2

28

๏ Class diagram

๏ Internal Structure Diagram

๏ Collaboration diagram

๏ Component diagram

๏ Use case diagram

๏ State machine diagram

๏ Activity Diagram

๏ Sequence diagram

๏ Communication Diagram

๏ Deployment diagram

๏ Package diagram

Structural

Dynamic

Physical
Model Management

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Requirements Engineering and Use Cases

29

• Requirements: documented need for what a system
or project should do

– 37% of problems with software projects have to do
with requirements

– 25% of the requirements change during the project
(and 35-50% in large projects)

• Therefore: embrace change!

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Types of Requirements: FURPS+ categorization

30

Functional
 features, capabilities

Usability
 human factors, help, documentation
Reliability
 frequency of failure, recoverability
Performance
 Response times, throughput, accuracy, resource usage
Supportability
 Adaptability, maintainability, configurability
+
 implementation, interface, operations, packaging, legal

Use Cases

Non-functional

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Use Cases

• Stories that describe usage of the system

– describe sequence of actions with an observable result
for a specific actor

– used by all kinds of stakeholders

• It does not describe the internal working of the
system

– What, not How

– Responsibilities of the system are described

31

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Use Case Diagram

32

Cashier

Refund

Purchased

Items

Process Sale

Cash register

system border

actor use case

association

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Fully Dressed Use Case Description

33

Use case: Process Sale

Primary Actor: Cashier

Stakeholders and
interests:

• Cashier: wants accurate, fast entry, and no payment errors, as cash
drawers shortages are deduced from his/her salary

• Customer: wants purchase and fast service with minimal effort. Wants
easily visible display of entered items and prices. Wants proof of
purchase to support returns.

• Manager, Government, Payment Company, ...

Precondition: Cashier is identified and authenticated

Success
Guarantee
(postcondition)

Sale is saved. Tax is correctly calculated. Receipt is generated. Accounting
and inventory are updated. Payment info is recorded.

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Domain Modeling

• A domain model describes meaningful concepts in
the problem domain

– again about the what, not the how

– does not model design artifacts (how), but models
conceptual artifacts, real-world things

34

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Domain model for the Cash Register example

35

Register

Item Store

address
name

Sale

date

time

Payment

amount

Sales
LineItem

quantity

Cashier Customer

Manager

Product
Catalog

Product
Specification

description
price
UPC

Stocks

*

Houses
1.. *

Used-by
*

Contains
1.. *

Describes
*

Captured-on

Contained-in
1.. *

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Logs-
completed

6

*

3 Records-sales-on

1

1

1

1

1

1..*

1 1

1

1

1

1

1

1

1

* 1

1

concept

attribute

association

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Class Diagrams

36

Register

...

endSale()

enterItem(...)
makePayment(...)

Sale

time

isComplete : Boolean
/total

makeLineItem(...)

Register

...

Sale

time

isComplete : Boolean
/total

Captures

1

11

Domain Model

conceptual

perspective

Design Model

DCD; software

perspective
currentSale

Domain model is the analysis class diagram

Don’t show methods

Design model class diagrams shows methods and visibility (arrowhead on

association)
Register has reference to Sale; Sale does not have reference to Register

Avoid showing no-argument constructors & getters/setters

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Class Diagrams

37

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

• UML Interaction diagrams

– model message-exchange between objects

• 2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

Interaction diagrams

a:ClassA b:ClassB

1: message2()

2: message3()message1()

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

• UML Interaction diagrams

– model message-exchange between objects

• 2 kinds:

– Communication Diagrams – focus on interactions

– Sequence Diagrams – focus on time

Interaction diagramma’s

b:ClassB

message2()

message3()

a:ClassA

message1()

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Communication Diagram Example

40

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

start message first internal message

instance association

parameter direction

follow-up message

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Sequence Diagram Example

41

 : Register : Sale : User

msg1()
msg2()

msg3()

msg4()

msg5()

time instance

lifeline

activation

assocation

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

Conclusion

• This course is about (OO) software design

– Understand quality design and implementation

– Make reasoned design decisions

– Make trade-offs that balance quality, effort, design, and
implementation

– Be able to communicate your decision

http://roelwuyts.be/OSS-1213/

42

Friday 28 September 12

http://roelwuyts.be/OSS-1011/
http://roelwuyts.be/OSS-1011/

Wuyts Roel
 imec restricted 2007

Sample Questions Individual Oral Examination

• Waarom heb je een visitor patroon nodig als je een taal hebt die open classes/class extensies ondersteunt ?

• Wanneer heeft het zin om het Iterator en het Composite patroon samen te gebruiken ?

• Kan je kort zeggen wat de Decorator en Strategy Patronen zijn, en aangeven wanneer je welke zou gebruiken ?

• Wat is een software development methodologie, en geef 2 voorbeelden. Wanneer zou je welke aanpak gebruiken ?

• Wat is refactoring ? Geef een voorbeeld van een refactoring.

• Wanneer refactor je in een XP project ?

• Wat is de bedoeling van de Overview Pyramid ?

• Hoe kan je weten of de controller in de GRASP Controller Pattern goed ontworpen is ?

• Wat is overriding en overlading? Pas ze beiden toe op een visitor design patroon en weeg de voor- en nadelen af.

• Welke design patronen kunnen nuttig zijn in een Unit Testing Framework ontwerp ?

• Bespreek de Law of Demeter.

• Wanneer is een verzameling unit tests goed te noemen ?

• Wat is double dispatch. Geef een voorbeeld. Bespreek een design patroon waar double dispatch gebruikt wordt.

43

Friday 28 September 12

Wuyts Roel
 imec restricted 2007

One More Thing

• Project: Sneak Peek: Settlers of Catan

44

JSettlers2 is a web-based version of the board game Settlers of
Catan written in Java.

It supports multiple
simultaneous games between
people and/or AI bots.

http://jsettlers2.sourceforge.net/

Friday 28 September 12

http://jsettlers2.sourceforge.net
http://jsettlers2.sourceforge.net

Wuyts Roel
 imec restricted 2007

One More Thing

• Projects Tracker:

http://goo.gl/EQ9du

• GoogleDocs document

• wiki-like: shared responsibility to keep it up to date and useful

45

Friday 28 September 12

http://goo.gl/EQ9du
http://goo.gl/EQ9du

