Ontwerp van SoftwareSystemen

2 Basic OO Design /

S Talcle

Friday 28 September 12

Basic OO Design Principles

» No matter whether you use forward engineering or re-
engineering: basic OO Design Principles hold

— Minimize Coupling
— Increase Cohesion
— Distribute Responsibilities

* You should always strife to use and balance these
principles

- they are fairly language- and technology independent

— processes, methodologies, patterns, idioms, ... all try to
help to apply these principles in practice

* Let’s have a look at concrete code bases for examples...
'lm cC ~ Wuyts Roel)

icted 2007
Friday 28 September 12

To remember...

* You write code once,
e but it is read many times more.
- By you
e 2 years later...

— By other people

* S0 your code better be readable!

i(mec 2007

Friday 28 September 12

Example

Tlcle

Friday 28 September 12

1

Indirect
Provider

Pravider provider

duSnmethini l

|

+ indirectProvider

Eeﬂ?rmrideru

provider.getProvider().doSomething()

or
provider.indirectProvider.doSomething

Client

Roel
007

Why is this bad ?

Indirect
Provider

Provider

+ indirectProvider

duSnmethinE

provider

EEiFmvider!}

provider.getProvider().doSomething()

ar

provider.indirectProvider doSomething

Client

* Client knows how Provider is implemented

— has to know that it uses an IndirectProvider

e uses the interface of Provider as well as of IndirectProvider

— Client and IndirectProvider are strongly coupled !

e Client has to use them together

e Changing either Provider or IndirectProvider impacts Client

Tlcle

Friday 28 September 12

uyts Roel
ted 2007

5

Reducing the Coupling

| Carburetor | 1 Engine | Car |
| +fuelValveOpen 1 + carburator ———{ - engine

| ' + increaseSpeed()

engine.carburetor.fuelValveOpen = true
Step 1 Q

| Carburetor | Engine | 1 Car |
| +fuelValveOpen i - carburator —— - engine

|] speedUp() ' + increaseSpeed()
I carburetor.fuelValveOpen = true ' ‘ engine.speedUp() '

Step 2

| Carburetor Engine
| - fuelValveOpen - carburator - engme

| + openFuelValve |speedUp ' |+|ncreaseSpeed('
fuelValveOpen = true ‘ carburetor.openFuelValve() ' Ienglne speedUp() '

- Wuyts Roel
lmec srictea 2007 | 6

Friday 28 September 12

Reducing Coupling impacts the design

 The interfaces of the classes become more clear
— a method ‘'speedUp()’ makes perfect sense
» Allows for more opportunity for reuse

— A subclass of Engine, “ElectricalEngine”, might not
need a Carburetor at all

e This is transparent for Car

Friday 28 September 12

'l mece “.' L e

7

“Law of Demeter”

Each unit should only talk to its friends;
don't talk to strangers

or, more formally:

You are only allowed to send messages to:
— yourself (self/this, super)
— an argument passed to you

— an object you create

Lieberherr, Karl. J. and Holland, I., Assuring good style for object-oriented programs,
IEEE Software, September 1989, pp 38-48

lmec B | s

Friday 28 September 12

Example 2

void CVideoAppUi: :HandleCommandL(TInt aCommand)
{
switch (aCommand)
{

case EAknSoftkeyExit:

case EAknSoftkeyBack:

case EEikCmdExit:

{ Exit(); break; }

// Play command is selected
case EVideoCmdAppPlay:
{ DoPlayL(); break; }

// Stop command is selected
case EVideoCmdAppStop:
{ DoStopL(); break; }

// Pause command is selected
case EVideoCmdAppPause:
{ DoPauselL(); break; }

// DocPlay command is selected
case EVideoCmdAppDocPlay:
{ DoDocPlayL(); break; }

// File info command is selected
case EVideoCmdAppDocFilelInfo: Nokia S60 mobile video player 3gpp source code

{ DoGetFileInfolL(); break; } http://www.codeforge.com/article/192637

i(mec 2007 | 9

Friday 28 September 12

http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html

Why is this bad ?

» Case (switch) statements in OO code are a sign of a
bad design

— lack of polymorphism: procedural way to implement a
choice between alternatives

— hardcodes choices in switches, typically scatteredin
several places

e when the system evolves these places have to be updated, but
are easy to miss

i(mec G007 | 10

Friday 28 September 12

Solution: Replace case by Polymorphism

void CVideoAppU1: :HandleCommandL(Command aCommand)
{

aCommand. execute();

}

Create a Command class hierarchy, consisting of a (probably) abstract class

AbstractCommand, and subclasses for every command supported. Implement execute on each
of these classes:

virtual void AbstractCommand: :execute() = 0;

virtual void PlayCommand::execute() { ... do play command ...};
virtual void StopCommand::execute() { ... do stop command ...};
virtual void PauseCommand::execute() { ... do pause command ...};
virtual void DocPlayCommand::execute() { ... do docplay command ...};
virtual void FileInfoCommand::execute() { ... do file info command ...};
Tilcle |

Friday 28 September 12

Added advantage

e These case statements occur wherever the command
integer is used in the original implementation

— you will quickly assemble a whole set of useful
methods for these commands

- Moreover, commands are then full-featured classes so
they can share code, be extended easily without
impacting the client, ...

— They can also be used when adding more advanced
functionalities such as undo etc.

» Have you noticed that the methods are shorter ?

- Wuyts Roel
(MccC cted 2007

12

Friday 28 September 12

Example 3: Duplicated code

* Occurs a lot
— Range of code duplication: roughly 10% to 25% !
- 19% in X Window System
- 68% of Java Buffer Library (JDK 1.4.1)

Tlcle

Friday 28 September 12

R 6e|
007

13

Problems with duplication

» Errors get spread
— fixes do not...
» Evolution of code is not reflected everywhere
— some places are forgotten and do not get updated

» Code bloat: code gets much bigger

— since no sharing

imec o | 14

Friday 28 September 12

Where can we find duplication?

* In the same class

— several methods that repeat a number of instructions
» Between siblings

— two classes that share a common superclass

— methods in siblings can repeat a number of
instructions

o Between unrelated classes

— classes not in a hierarchy can still repeat the same sets
of instructions

m cC ?;F;)%(a; 15

Friday 28 September 12

Removing Duplicated Code

* In the same class
— Extract Method
» Between two sibling subclasses
— Extract Method
— Push identical methods up to common superclass
- Form Template Method
» Between unrelated class
— Create common superclass
— Move to Component
— Extract Component (e.qg., Strategy)

imec o | 16

Friday 28 September 12

Example 4: Guardian Code

o It happens regularly that the body of a method
should only be executed when a certain condition is
met

- typically null checks for arguments, etc.

» Schematically the method typically looks like this:
MyMethod {

if (quardian condition) {

lmec iceaz007 | 17

Friday 28 September 12

Guardian Code Example

void CVideoAppUi::DynlnitMenuPaneL(
TInt aResourceld,CEikMenuPane* aMenuPane)

{ /
if (aResourceld == R_VIDEO_MENU)

{

/] Check whether the database has been created or not

if (iEngine->GetEngineState() != EPPlaying)
{
// The video clip is not being played
aMenuPane->SetltemDimmed(EVideoCmdAppStop, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPause, ETrue);

}

Guardian statement

/] If there is no item in the list box, hide the play, docplay

// and file info menu items

if (liAppContainer->GetNumOfltemslnListBox())
{
aMenuPane->SetltemDimmed(EVideoCmdAppDocFilelnfo, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppDocPlay, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPlay, ETrue);
}

IMecC | 18

Friday 28 September 12

Switching it around...

void CVideoAppUi::DynlnitMenuPaneL(h
TInt aResourceld,CEikMenuPane* aMenuPane) retu 'n wnen

{ o o
if (aResourceld != R_VIDEO_MENU) {return }; %Ondltlon not met

// Check whether the database has been created or not

if (iEngine->GetEngineState() != EPPlaying)
{
// The video clip is not being played
aMenuPane->SetltemDimmed(EVideoCmdAppStop, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPause, ETrue);
}

// If there is no item in the list box, hide the play, docplay

// and file info menu items

if (liAppContainer->GetNumOfltemsInListBox())
{
aMenuPane->SetltemDimmed(EVideoCmdAppDocFileinfo, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppDocPlay, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPlay, ETrue);
}

IMeC - | 19

Friday 28 September 12

Split using the comments

void CVideoAppUi::DynlnitMenuPaneL(
TInt aResourceld,CEikMenuPane* aMenuPane)

{
if (aResourceld '= R_VIDEO_MENU) {return };

dimButtonsWhenNotPlaying

// Check whether the database has been created or not

if (iEngine->GetEngineState() != EPPlaying)
{
// The video clip is not being played
aMenuPane->SetltemDimmed(EVideoCmdAppStop, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPause, ETrue);
}

// If there is no item in the list box, hide the play, docplay

// and file info menu items

if (liAppContainer->GetNumOfltemsInListBox())
{
aMenuPane->SetltemDimmed(EVideoCmdAppDocFileinfo, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppDocPlay, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPlay, ETrue);

dimButtonsVYWhenNoltem

m cC ?;F;)%(a; 20

Friday 28 September 12

Splitting results

void CVideoAppUi::DynlnitMenuPaneL(TInt aResourceld,CEikMenuPane* aMenuPane)
{
if (aResourceld '= R_VIDEO_MENU) {return };
dimButtonsWhenNotPlaying(aMenuPane);
dimButtonsWhenNoltem(aMenuPane);

¥

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
if (iEngine->GetEngineState() != EPPlaying) {
aMenuPane->SetltemDimmed(EVideoCmdAppStop, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPause, ETrue);

void CVideoAppUi:: dimButtonsWhenNoltem(CEikMenuPane* aMenuPane)
{
if (liAppContainer->GetNumOfltemslInListBox()) {
aMenuPane->SetltemDimmed(EVideoCmdAppDocFileinfo, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppDocPlay, ETrue);
aMenuPane->SetltemDimmed(EVideoCmdAppPlay, ETrue);

- Wuyts Roel
(MccC ictea 2007 | 2!

Friday 28 September 12

More things that could be done

void CVideoAppUi::DynlnitMenuPaneL(TInt aResourceld,CEikMenuPane* aMenuPane)
{
if (aResourceld '= R_VIDEO_MENU) {return };
dimButtonsWhenNotPlaying(aMenuPane);
dimButtonsWhenNoltem(aMenuPane);

¥

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
if (iEngine->GetEngineState() != EPPlaying) {
aMenuPane->Dimltem(EVideoCmdAppStop);
aMenuPane->Dimltem(EVideoCmdAppPause);

void CVideoAppUi:: dimButtonsWhenNoltem(CEikMenuPane* aMenuPane)
{
if (liAppContainer->GetNumOfltemslInListBox()) {
aMenuPane->Dimltem(EVideoCmdAppDocFilelnfo);
aMenuPane->Dimltem(EVideoCmdAppDocPlay);
aMenuPane->Dimltem(EVideoCmdAppPlay);

IMeC icted 2007 | 22

Friday 28 September 12

And More...

void CVideoAppUi::DynlnitMenuPaneL(CEikMenuPane* aMenuPane)
{
dimButtonsWhenNotPlaying(aMenuPane);
dimButtonsWhenNoltem(aMenuPane);

¥

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
if (iEngine->notPlaying()) {
aMenuPane->Dimltem(EVideoCmdAppStop);
aMenuPane->Dimltem(EVideoCmdAppPause);

void CVideoAppUi:: dimButtonsWhenNoltem(CEikMenuPane* aMenuPane)

{
if (iAppContainer->isListBoxEmpty()) { return; };

aMenuPane->Dimltem(EVideoCmdAppDocFilelnfo);
aMenuPane->Dimltem(EVideoCmdAppDocPlay);
aMenuPane->Dimltem(EVideoCmdAppPlay);

}

Imec ke a0y | 23

Friday 28 September 12

Stepping Back

» Showed concrete examples (and solutions) of
breaches of basic OO design principles visible in code

— Fixing them improved the design!

* Question: how can we avoid this ?

- be cautious ;-)
— get help by applying:
e Design principles and methodologies
— eg.: Responsibility Driven Design
e GRASP patterns, Design Patterns

e Idioms and Programming Practices

Friday 28 September 12

Patterns

Wuyts Roel
icted 2007 25

Talcle

Friday 28 September 12

Bit of history...

o Christoffer Alexander

- "The Timeless Way of Building”, Christoffer Alexander,
Oxford University Press, 1979, ISBN 0195024028

— Structure of the book is magnificent

e Christmass is close ;-)
*» More advanced than what computer science uses

— only the simple parts got mainstream

i(mec e

Friday 28 September 12

Alexander’s patterns

» “Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in

such a way that you can use this solution a million
times over, without doing it the same way twice”

— Alexander uses this as part of the solution to capture
the “quality without a name”

'lm eC Wuyts Roel

stricted 2007 27

Friday 28 September 12

Illustrating Recurring Patterns...

»
PRI
) Al 3 B Ve e
AL e AN

Imec

Friday 28 September 12

Wuyts Roel
© imec restricted 2007

28

Essential Elements in a Pattern

e Pattern name

— Increase of design vocabulary
e Problem description

- When to apply it, in what context to use it
e Solution description (generic !)

- The elements that make up the design, their
relationships, responsibilities, and collaborations

e Consequences
— Results and trade-offs of applying the pattern

Tlcle

Friday 28 September 12

-._ ts Roel
ed 2007

29

Responsibility Driven Design

* Metaphor - can compare to people]
Understanding

Responsibilities is
key to good OO
Design

— Objects have responsibilities
— Objects collaborate

— Similar to how we conceive of people

» In RDD we ask questions like
— What are the responsibilities of this object
— Which roles does the object play

— Who does it collaborate with

e Domain model
— classes do NOT have responsibilities!
- they merely represent concepts + relations

— design is about realizing the software = someone has to do the work ... who ??

i(mec 2507

Friday 28 September 12

Responsibilities

» Two types of responsibilities

— Doing

e Doing something itself (e.g. creating an object, doing a
calculation)

e Initiating action in other objects

e Controlling and coordinating activities in other objects
— Knowing

e Knowing about private encapsulated data

e Knowing about related objects

e Knowing about things it can derive or calculate

(ylcle 2007

Friday 28 September 12

Responsibilities and Methods

» Responsibilities are assigned to classes during object design,
and are reflected in methods

— We may declare the following:
e “a Sale is responsible for creating SalesLineltems” (doing)

e “a Sale is responsible for knowing its total” (knowing)

» Responsibilities related to “knowing”

— often inferable from the Domain Model
(because of the attributes and associations it illustrates)

— | low representationalgap ! - LRG

'l mece “.' L e

Friday 28 September 12

GRASP Patterns

» guiding principles to help us assign responsibilities
o GRASP "Patterns” - guidelines

e Controller ‘
e Creator
e Information Expert } Hs |/
e Low Coupling
e High Cohesion 1
e Polymorphism

e Pure Fabrication

e Indirection HS 25

e Protected Variations

imec 2007

Friday 28 September 12

4. Low Coupling Pattern

Pattern Low Coupling

Problem How to stimulate low independance, reduce impact of change and
increase reuse!

Solution Assign responsibilities such that your design exhibits low coupling.
Use this principle to evaluate and compare alternatives.

lmec icea 2007 | 34

Friday 28 September 12

Low Coupling Patroon

r
.
—>
makePayment() :Register
(
_

m Which design is better?
m Coupling to stable libraries/classes?
m Key principle for evaluating choices

Tlcle

Friday 28 September 12

—>
makePayment()

—>
makePayment()

:Register

:Register

—>
1: create()
p : Payment
—>
2: addPayment(p)
Sale
—>
1:makePayment
y () Sale
1.1. create()
:Payment
-n ts Roel
ed 2007 35

Low Coupling Patroon

» Coupling is a measure that shows how much a class is dependent on
other classes

o X dependsonY:
— X has attribute of type Y
- X uses a service of Y
— X has method referencing Y (param, local variable)
— X inherits from Y (direct or indirect)
— X implements interface Y

- (X does not compile without Y)
o “evaluative” pattern:

— use it to evaluate alternatives

— try to reduce coupling

i(mec 2507

Friday 28 September 12

Low Coupling Patroon

» Coupling is a measure that shows how much a class is dependent on
other classes

o X dependsonY:
— X has attribute of type Y
- X uses a service of Y
— X has method referencing Y (param, local variable)

— X inherits from Y (direct or indirect)

— X implements interface Y
- (X does not compile without Y)
o “evaluative” pattern:

— use it to evaluate alternatives

— try to reduce coupling

imec -

Friday 28 September 12

Low Coupling Patroon

» Coupling is a measure that shows how much a class is dependent on
other classes

o X dependsonY:
— X has attribute of type Y
- X uses a service of Y
— X has method referencing Y (param, local variable)

— X inherits from Y (direct or indirect)

— X implements interface Y
— (X does not compile without Y) S S
o “evaluative” pattern:

— use it to evaluate alternatives

— try to reduce coupling

Tlcle

Friday 28 September 12

Low Coupling Pattern

» Advantages of low coupling:
- reduce impact of changes (isolation)
— increase understandibility (more self-contained)
— enhance reuse (independance)

» Is not an absolute criterium

— Coupling is always there

» Inheritance is strong coupling !!

'lm cC | 37

Friday 28 September 12

Low Coupling Patroon: remarks

 Aim for low coupling with all design decisions
o Cannot be decoupled from other patterns

* Learn to draw the line (experience)

— do not pursue low coupling in the extreme
e Bloated and complex active objects doing all the work

e |ots of passive objects that act as simple data repositories

— OO0 Systems are built from connected collaborating
objects

» Coupling with standardized libraries is NOT a problem

e Coupling with unstable elements IS a problem
imec B, | 38

Friday 28 September 12

5. High Cohesion Pattern

Pattern High Cohesion

Problem How to retain focus, understandability and control of objects, while
obtaining low coupling?

Solution Assign responsibilities such that the cohesion of an object remains
high. Use this principle to evaluate and compare alternatives.

.uyts Roel 39

lmec

Friday 28 September 12

High Cohesion Patroon

a —

—>

makePayment() _ 1: create()
:Register p : Payment

2: addPayment(p)
_ :Sale
_>
makePayment() Reqister r
makePa;r;ent() Register 1:make;;yment() -Sale
< 1i1 . create()
_ :Payment
m Cohesion: Object should have strongly related operations or responsibilities
Reduce fragmentation of responsibilities (complete set of responsibility)
m To be considered in context => register cannot be responsible for all register-related
tasks
. L |
IMEC e | 10

Friday 28 September 12

High Cohesion Patroon

® Cohesion is a measure that shows how strong responsibilities of a

class are coupled.

®]s an “evaluative” pattern:

O

use it to evaluate alternatives

O aim for maximum cohesion

= (well-bounded behavior)

B Cohesie N

O

O

number of methods @& (bloated classes)
understandability N
reuse N

maintainability N

Tlcle

Friday 28 September 12

High Cohesion Pattern: remarks

* Aim for high cohesion in each design decision
» degree of collaboration
— Very low cohesion: a class has different responsibilities in widely varying functional domains
e class RDB-RPC-Interface: handles Remote Procedure Calls as well as access to relational databases
— Low cohesion: a class has exclusive responsibility for a complex task in one functional domain.
e class RDBInterface: completely responsible for accessing relational databases

e methods are coupled, but lots and very complex methods

- Average cohesion: a class has exclusive ‘lightweight’ responsibilities from several functional
domains. The domains are logically connected to the class concept, but not which each other

e a class Company that is responsible to manage employees of a company as well as the financials

e occurs often in ‘global system’ classes !!

— High cohesion: a class has limited responsibilities in one functional domain, collaborating with
other classes to fulfill tasks.

e klasse RDBInterface: partially responsible for interacting with relational databases

i(mec 2507

Friday 28 September 12

1. Controller Pattern

» Who is responsible for handling Systemoperations ?

Object Store — [x]

UPC Quantity

Total |

ndered | Balance

--------------------- ter Item | End Sale | ‘ Make Payment |

event

onEnterltem()}

Presentation Layer

(Java applet) :SaleJFrame

systemoperation

(1: enterltem(itemiD, @L

Domain Layer

controller

IMeC icied 2007 | 43

Friday 28 September 12

Controller Pattern

Pattern Controller

Problem Who is responsible for handling system events ?

Solution Assign the responsibility to a class C representing one of the
following choices:

* Cis a facade controller: it represents the overall system, a root
object, the device that runs the software, or a major subsystem.

* Cis a use case or session controller: it represents an artificial
objects (see Pure Fabrication pattern) that handles all events from
a use case or session

. Wuyts Roel 44
lmeC trjcted 2007

Friday 28 September 12

System operations and System events

» From analysis to design:

— Analysis: can group system operations in a conceptual
“System” class

— Design: give responsibility for processing system
operations to controller classes

o Controller classes are not part of the User Interface

*» Model-View-Controller (MVC)

IMeC B | 45

Friday 28 September 12

Who controls System events?

%

Cashier :System
enterltem(UPC, quantity) >
endSale() >
makePayment(amount)

Tlcle

Friday 28 September 12

/

choice depends
on other factors

\

overall system

root object

device

artificial object

Roel
007

Who controls System events?

%

Cashier

enterltem(UPC, quantity)

:System

endSale()

makePayment(amount)

Tlcle

Friday 28 September 12

/

choice depends
on other factors

\

E — .
enterltem(upc, quantity)

:POSSystem

overall system

root object

device

artificial object

5 Roel
2007

Who controls System events?

%

Cashier :System
enterltem(UPC, quantity) >
endSale() >
makePayment(amount)

Tlcle

Friday 28 September 12

choice depends
on other factors

\

E — .
enterltem(upc, quantity)

:POSSystem

overall system

— .
enterltem(upc, quantity)

root object

device

artificial object

s Roel
2007

Who controls System events?

%

E — .
enterltem(upc, quantity)

:POSSystem

overall system

— .
enterltem(upc, quantity)

Cashier :System
enterltem(UPC, quantity) >
endSale() >
makePayment(amount)

Tlcle

Friday 28 September 12

root object
choice depends

on other factors

\ enterltem(upc, quantity)
PS 9 Y :RegisterDevice

device

artificial object

'ts Roel

12007

Who controls System events?

%

E — .
enterltem(upc, quantity)

:POSSystem

overall system

— .
enterltem(upc, quantity)

Cashier :System
enterltem(UPC, quantity) >
endSale() >
makePayment(amount)

Tlcle

Friday 28 September 12

root object

choice depends
on other factors

E — .
\ enterltem(upc, quantity)

:RegqisterDevice

device

— .
enterltem(upc, quantity)

:ProcessSaleHandler

artificial object

-._ ts Roel
ed 2007

Controller Pattern: Guidelines

» Limit the responsibility to “control and coordination”
— Controller = delegation pattern
delegate real work to real objects

— Common mistake: fat controllers with too much
behavior

* Only support a limited number of events in Facade
controllers

IMeC B | 47

Friday 28 September 12

Controller Pattern: Use Case Controller Guidelines

» Use Case (UC) controllers

— consider when too much coupling and not enough
cohesion in other controllers (factor system events)

— Treat all UC events in the same controller class
— Allow control on the order of events

— Keep information on state of UC (statefull session)

Tlcle

Friday 28 September 12

Roel
2007

48

Controller Pattern: Problems and Solutions

» "Bloated” controllers
- symptoms
e a single controller handling all system events

e controller not delegating work

e controller with many attributes, with system information, with
duplicated information

— solutions
e add Use Case controllers

e design controllers that delegate tasks

Tlcle e

Friday 28 September 12

Controller Pattern: Advantages

» Increased potential for reuse
e domain-level processes handled by domain layer
e decouple GUI from domain level !

e Different GUI or different ways to access the domain level

o Reason about the state of the use case

e guarantee sequence of system operations

Tlcle

Friday 28 September 12

'ts Roel

12007

Example

event uPC Quantity

- Controller
e Pattern

..................... > End Sale ‘ Make Payment

on Enterltem()l

To Avoid!

: makeLineltem(upc, gt
Presentation Layer | ., qra ot (upc, qty) : | \

(Java applet)
system operation

—>
Domain Layer :POST\1 : makeLineltem(upc, gty) Sal

controller

D

imec | s

Friday 28 September 12

2. Creator Pattern

Pattern Creator

Problem Who is responsible for creating instances of classes ?

Solution Assign a class B to create instances of a class A if:
* B is a composite of A objects (composition/aggregation)
* B contains A objects (contains)
* B holds instances of A objects (records)

* B closely collaborates with A objects

B has the information needed for creating A objects

Tailcle s | 5

Friday 28 September 12

Creator Pattern: example

Creation of “"SalesLineltem” instances

1: create(quantity)

I
\

:SalesLineltem

Tlcle

Friday 28 September 12

Sale

date
time

total()

1.

Contains

*

Sales

Lineltem

Described-by

Product
Specification

quantity

description
price
UPC

s Roel
2007

Creator Pattern: example

Creation of “"SalesLineltem” instances

—>
makeLineltem(quantity)

1: create(quantity)

I
\

:SalesLineltem

Tlcle

Friday 28 September 12

Sale

date
time

makeLineltem()

total()

1.

Contains

*

Sales

Lineltem

Described-by

Product
Specification

quantity

description
price
UPC

'ts Roel
12007

Creator Pattern: Inspiration from the Domain Moc¢

Sales
Lineltem Store
Stocks Item
quantity 1 | address 1 *
name
y fiche
Contained-in Log 1 Houses
completed R
1 ? 1
Sale g 1 Register
Manager
date Started-by T
C iptured-on 1
time 1 1

i
Paid-; v J‘ |_ I- tiated-by

1

Payment

amount

Tlcle

Friday 28 September 12

1

Customer

7?7 Records-sales-on

1

Cashier

Roel
007

3. Information Expert Pattern

» A very basic principle of responsibility assignment

» Assign a responsibility to the object that has the

information necessary to fulfill it -the information
expert

- "That which has the information, does the work”
— Related to the principle of “low coupling”

= Localize work

imec Nuyts Roel 55

icted 2007

Friday 28 September 12

Expert Pattern

Pattern (Information) Expert

Problem What is the basic principle to assign responsibilities to objects ?

Solution Assign responsibility to the class that has the information to fulfill it
(the information expert)

yts Roel 56

Tlcle i

Friday 28 September 12

Expert Pattern: remarks

» Real-world analogy

— who predicts gains/losses in a company?

e the person with access to the date (Chief Financial Officer)

*» Needed information to work out ‘responsibility’
=> spread over different objects

III

— “partial” experts that collaborate to obtain global
information (interaction is required)

» Not necessarily the best solution (e.g. database
access)

— See low coupling & high cohesion

ImecC icea 2007 | 57

Friday 28 September 12

Expert Patroon: example 1

mExample: Who is responsible for
knowing the total of a “Sale”?

®m\Who possesses the information?

(pylcle 2007

Friday 28 September 12

Expert Patroon: example 1

mExample: Who is responsible for
knowing the total of a “Sale”?

Sale domein model
®\Who possesses the information? date
time
Contains
1.7
Product
Sales . Specification
Lineltem Described-by
description
quantity price
ItemID
. Iy |
(MmeccC 2 2007

Friday 28 September 12

t = getTotal()

1*: st =getSubtotal()

lineltemsJi]:SalesLineltem

1.1: p = getPrice()

:Product
Specification

Tlcle

Friday 28 September 12

Expert Pattern

class diagram

Sale .
(design model)
date
time
getTotal()
Contains
1."
Product
Sales Specification
Lineltem |~ Described-by
description
quantity price
itemID
getSubtotal()
getPrice()
lts Roel

ed 2007

Expert Pattern: Example 2

What object should be responsible for knowing
ProductSpecifications, given a key!?
Take inspiration from the domain model

Records-sale-of

Sales
Lineltem

juantity

1‘

Tlcle

Friday 28 September 12

Dzsuribed-by)
Product
Product Specification
Catalog Contains
1 > description
" | price
7 itemID
2sod-by Tescribes
| *
Store t
Stocks —
address 1 * 1.0
name =

-._ ts Roel
ed 2007

60

Applying Information Expert

- —»

enteritem(id, qty) 2: makeLineltem (spec, qty)
Register Sale

1: spec := getSpecification(id) l
0.,

Product
T 1 by Expert N

1.1: spec :=find(id) l

:Map
<ProductDescription>

imec 07

Friday 28 September 12

Design for “enterItem”: 3 patterns applied

_..--{ by Controller ﬁ .4 by Creator ﬁ

-

. -5 o
enteritem(id, qty) —- : 2: makeLineltem(spec, qty) —>
‘Register Sale
1: spec = '
getSpegifcation(id) | 2.1: create(spec, aty) | |
. ‘Product
by Expert ‘I Catalog sl: SalesLineltem
22: add(sl)
1.1: spec := find(id) | ‘

<SalesLineltem>

:Map
<ProductDescription>

i(mec e

Friday 28 September 12

GRASP Patterns

» guiding principles to help us assign responsibilities
o GRASP "Patterns” - guidelines

e Controller ‘
e Creator
e Information Expert } Hs |/
e Low Coupling
e High Cohesion J
e Polymorphism

e Pure Fabrication
Hs 25

e Indirection

e Protected Variations

imec 200

Friday 28 September 12

6. Polymorphism

Pattern Polymorphism

Problem How handle alternatives based on type! How to create pluggable
software components!?

Solution When related alternatives or behaviours vary by type (class), assign

responsibility for the behavior -using polymorphic operations- to
the types for which the behavior varies.

Talcle

Friday 28 September 12

Wuyts Roel
icted 2007

64

Example

void CVideoAppUi: :HandleCommandL(TInt aCommand)
{

switch (aCommand)
{
case EAknSoftkeyExit:
case EAknSoftkeyBack:
case EEikCmdExit:
{ Exit(); break; }

// Play command is selected
case EVideoCmdAppPlay:
{ DoPlayL(); break; }

// Stop command is selected
case EVideoCmdAppStop:
{ DoStopL(); break; }

// Pause command is selected
case EVideoCmdAppPause:
{ DoPauselL(); break; }

// DocPlay command is selected
case EVideoCmdAppDocPlay:
{ DoDocPlayL(); break; }

// File info command is selected
case EVideoCmdAppDocFilelInfo:
{ DoGetFileInfoL(); break; }

Friday 28 September 12

5 Roel
2007

65

Replace case by Polymorphism

void CVideoAppU1: :HandleCommandL(Command aCommand)
{

aCommand. execute();

}

Create a Command class hierarchy, consisting of a (probably) abstract class

AbstractCommand, and subclasses for every command supported. Implement execute on each
of these classes

virtual void AbstractCommand::execute() = 0;

virtual void PlayCommand::execute() { ... do play command ...};

virtual void StopCommand::execute() { ... do stop command ...};

virtual void PauseCommand::execute() { ... do pause command ...};
virtual void DocPlayCommand::execute() { ... do docplay command ...};
virtual void FileInfoCommand::execute() { ... do file info command ...};

Niylcle s | o

Friday 28 September 12

/. Pure Fabrication Pattern

Pattern Pure Fabrication

Problem What object should have the responsibility, when you do not want to
violate High Cohesion and Low Coupling, or other goals, but solutions
offered by Expert (for example) are not appropriate?

Solution Assign a cohesive set of responsibilities to an artificial or
convenience class that does not represent a problem domain
concept but is purely imaginary and fabricated to obtain a pure
design with high cohesion and low coupling.

- Wuyts Roel 67
lmeC astricted 2007

Friday 28 September 12

Pure Fabrication Pattern

» Where no appropriate class is present: invent one
— Even if the class does not represent a problem domain concept

- “pure fabrication” = making something up: do when we’re
desperate!

» This is a compromise that often has to be made to preserve
cohesion and low coupling

— Remember: the software is not designed to simulate the
domain, but operate in it

— The software does not always have to be identical to the real
world

e Domain Model # Design model

- Vl ts Roel
(MmccC ted 2007

68

Friday 28 September 12

Pure Fabrication Example

*» Suppose Sale instances need to be saved in a database
» Option 1: assign this to the Sale class itself (Expert pattern)
— Implications of this solution:
e auxiliary database-operations need to be added as well
e coupling with particular database connection class
e saving objects in a database is a general service
* Option 2: create PersistentStorage class

— Result is generic and reusable class with low coupling and high cohesion

Sale PersistentStorage
insert() insert(Object)
update() update(Object)
. ts Roel
l m e C 12007

Friday 28 September 12

8. Indirection Pattern

Pattern Indirection

Problem Where to assign a responsibility to avoid direct coupling between two
(or more) things? How to de-couple objects so that low coupling is
supported and reuse potential remains higher?

Solution Assign the responsibility to an intermediate object to mediate
between other components or services so that they are not
directly coupled.

This intermediary creates an indirection between the other
components.

Wuyts Roel 70

-
lmeC trjcted 2007

Friday 28 September 12

Indirection Pattern

e A common mechanism to reduce coupling

e Assign responsibility to an intermediate object to decouple two
components

— coupling between two classes of different subsystems can
introduce maintenance problems

* “most problems in computer science can be solved by another
level of indirection”

— A large number of design patterns are special cases of indirection
(Adapter, Facade, Observer)

Sale ﬁ

ﬁ TaxSystem

.uyts Roel
icted 2007

Talcle

Friday 28 September 12

9. Protected Variations Pattern

Pattern Protected Variations

Problem How to design objects, subsystems, and systems so that the variations or
instability of these elements does not have an undesirable impact on
other elements !

Solution Identify points of predicted variation or instability; assign
responsibilities to create a stable interface around them.

Wuyts Roel 72

imec 'c‘te.d 2007

Friday 28 September 12

Protected Variations — voorbeeld

* Video game companies make money by creating a game engine
— many games use the same engine

- what if a game is to be ported to another console ???

e a wrapper object will have to delegate 3D graphics drawing to different console-level
commands

e the wrapper is simpler to change than the entire game and all of its facets

» Wrapping the component in a stable interface means that when
variations occur, only the wrapper class need be changed

— In other words, changes remain localized

- The impact of changes is controlled

FUNDAMENTAL PRINCIPLE IN SW DESIGN
Nlcle s | 73

Friday 28 September 12

Protected Variations — Example

» Open DataBase Connectivity (ODBC/JDBC)

— These are packages that allow applications to access
databases in a DB-independent way

e In spite of the fact that databases all use slightly different
methods of communication

e It is possible due to an implementation of Protected Variations

— Users write code to use a generic interface

e An adapter converts generic method calls to DB and vice versa

i(mec e

Friday 28 September 12

Conclusion

» Always try to apply and balance basic OO Design
Principles

— Minimize Coupling
— Increase Cohesion

— Distribute Responsibilities

e Use and learn from established sources of
information

— Responsibility Driven Design
— GRASP patterns

e Design Patterns: see later

IMeC - | 75

Friday 28 September 12

