
Ontwerp van SoftwareSystemen

2 Basic OO Design

Roel Wuyts
OSS 2012-2013

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Basic OO Design Principles

2

• No matter whether you use forward engineering or re-
engineering: basic OO Design Principles hold

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

• You should always strife to use and balance these 
principles

– they are fairly language- and technology independent

– processes, methodologies, patterns, idioms, ... all try to 
help to apply these principles in practice

• Let’s have a look at concrete code bases for examples...

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

To remember...

• You write code once,

• but it is read many times more.

– By you

• 2 years later...

– By other people

• So your code better be readable!

3

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example 1

4

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Why is this bad ?

• Client knows how Provider is implemented

– has to know that it uses an IndirectProvider

• uses the interface of Provider as well as of IndirectProvider

– Client and IndirectProvider are strongly coupled !

• Client has to use them together

• Changing either Provider or IndirectProvider impacts Client

5

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Reducing the Coupling

6

Engine
+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Reducing Coupling impacts the design

• The interfaces of the classes become more clear

– a method ‘speedUp()’ makes perfect sense

• Allows for more opportunity for reuse

– A subclass of Engine, “ElectricalEngine”, might not 
need a Carburetor at all

• This is transparent for Car

7

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

“Law of Demeter”

8

You are only allowed to send messages to:

– yourself (self/this, super)

– an argument passed to you

– an object you create

Each unit should only talk to its friends;
don't talk to strangers

or, more formally:

Lieberherr, Karl. J. and Holland, I.,  Assuring good style for object-oriented programs, 
IEEE Software, September 1989, pp 38-48

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example 2

9

void CVideoAppUi::HandleCommandL(TInt aCommand)
    {
    switch ( aCommand )
        {
	  case EAknSoftkeyExit:
          case EAknSoftkeyBack:
          case EEikCmdExit:
            { Exit();  break; }
       
	 // Play command is selected
	 case EVideoCmdAppPlay:
   	 	 { DoPlayL(); break; }

        // Stop command is selected
	 case EVideoCmdAppStop:
   	 	 { DoStopL(); break; }
        
        // Pause command is selected
	 case EVideoCmdAppPause:
	 	 { DoPauseL(); break; }

	 // DocPlay command is selected
	 case EVideoCmdAppDocPlay:
	 	 { DoDocPlayL(); break; }

        // File info command is selected
	 	 case EVideoCmdAppDocFileInfo:
	   { DoGetFileInfoL(); break; }
...... 

Nokia S60 mobile video player 3gpp source code
http://www.codeforge.com/article/192637

Friday 28 September 12

http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html
http://www.codeforge.com/read/192637/VideoAppUi.cpp__html


Wuyts Roel
 imec restricted 2007

Why is this bad ?

• Case (switch) statements in OO code are a sign of a 
bad design

– lack of polymorphism: procedural way to implement a 
choice between alternatives

– hardcodes choices in switches, typically scatteredin 
several places

• when the system evolves these places have to be updated, but 
are easy to miss

10

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Solution: Replace case by Polymorphism

11

void CVideoAppUi::HandleCommandL(Command aCommand)
    {
	   aCommand.execute();
	  }

Create a Command class hierarchy, consisting of a (probably) abstract class 
AbstractCommand, and subclasses for every command supported. Implement execute on each 
of these classes:

virtual void AbstractCommand::execute() = 0;

virtual void PlayCommand::execute() { ... do play command ...};

virtual void StopCommand::execute() { ... do stop command ...};

virtual void PauseCommand::execute() { ... do pause command ...};

virtual void DocPlayCommand::execute() { ... do docplay command ...};

virtual void FileInfoCommand::execute() { ... do file info command ...};

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Added advantage

• These case statements occur wherever the command 
integer is used in the original implementation

– you will quickly assemble a whole set of useful 
methods for these commands

– Moreover, commands are then full-featured classes so 
they can share code, be extended easily without 
impacting the client, ...

– They can also be used when adding more advanced 
functionalities such as undo etc.

• Have you noticed that the methods are shorter ?

12

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example 3: Duplicated code

• Occurs a lot

– Range of code duplication: roughly 10% to 25% !

– 19% in X Window System

– 68% of Java Buffer Library (JDK 1.4.1)

13

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Problems with duplication

• Errors get spread

– fixes do not...

• Evolution of code is not reflected everywhere

– some places are forgotten and do not get updated

• Code bloat: code gets much bigger

– since no sharing

14

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Where can we find duplication?

• In the same class

– several methods that repeat a number of instructions

• Between siblings

– two classes that share a common superclass

– methods in siblings can repeat a number of 
instructions

• Between unrelated classes

– classes not in a hierarchy can still repeat the same sets 
of instructions

15

Friday 28 September 12



Wuyts Roel
 imec restricted 2007 16

Removing Duplicated Code

• In the same class
– Extract Method

• Between two sibling subclasses
– Extract Method 
– Push identical methods up to common superclass 
– Form Template Method

• Between unrelated class
– Create common superclass
– Move to Component
– Extract Component (e.g., Strategy)

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example 4: Guardian Code

• It happens regularly that the body of a method 
should only be executed when a certain condition is 
met

– typically null checks for arguments, etc.

• Schematically the method typically looks like this:
MyMethod {


 if (guardian condition) {


 
 ...


 }

}

17

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Guardian Code Example

void CVideoAppUi::DynInitMenuPaneL(
    TInt aResourceId,CEikMenuPane* aMenuPane)
    {
    if ( aResourceId == R_VIDEO_MENU )

 {

 // Check whether the database has been created or not

 if ( iEngine->GetEngineState() != EPPlaying )

     {

     // The video clip is not being played

     aMenuPane->SetItemDimmed( EVideoCmdAppStop, ETrue );

     aMenuPane->SetItemDimmed( EVideoCmdAppPause, ETrue );

     }


 // If there is no item in the list box, hide the play, docplay

 // and file info menu items

 if ( !iAppContainer->GetNumOfItemsInListBox() )


 {

 aMenuPane->SetItemDimmed( EVideoCmdAppDocFileInfo, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppDocPlay, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppPlay, ETrue );

 }


 }
}

18

Guardian statement

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Switching it around...

void CVideoAppUi::DynInitMenuPaneL(
    TInt aResourceId,CEikMenuPane* aMenuPane)
    {
    if ( aResourceId != R_VIDEO_MENU ) {return };


  // Check whether the database has been created or not
  if ( iEngine->GetEngineState() != EPPlaying )

 {

 // The video clip is not being played

 aMenuPane->SetItemDimmed( EVideoCmdAppStop, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppPause, ETrue );

 }

  // If there is no item in the list box, hide the play, docplay
  // and file info menu items
  if ( !iAppContainer->GetNumOfItemsInListBox() )

  {
  aMenuPane->SetItemDimmed( EVideoCmdAppDocFileInfo, ETrue );
  aMenuPane->SetItemDimmed( EVideoCmdAppDocPlay, ETrue );
  aMenuPane->SetItemDimmed( EVideoCmdAppPlay, ETrue );
  }

     }

19

return when
condition not met

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Split using the comments

void CVideoAppUi::DynInitMenuPaneL(
    TInt aResourceId,CEikMenuPane* aMenuPane)
    {
    if ( aResourceId != R_VIDEO_MENU ) {return };


  // Check whether the database has been created or not
  if ( iEngine->GetEngineState() != EPPlaying )

 {

 // The video clip is not being played

 aMenuPane->SetItemDimmed( EVideoCmdAppStop, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppPause, ETrue );

 }

  // If there is no item in the list box, hide the play, docplay
  // and file info menu items
  if ( !iAppContainer->GetNumOfItemsInListBox() )

  {
  aMenuPane->SetItemDimmed( EVideoCmdAppDocFileInfo, ETrue );
  aMenuPane->SetItemDimmed( EVideoCmdAppDocPlay, ETrue );
  aMenuPane->SetItemDimmed( EVideoCmdAppPlay, ETrue );
  }

     }

20

dimButtonsWhenNotPlaying

dimButtonsWhenNoItem

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Splitting results

void CVideoAppUi::DynInitMenuPaneL(TInt aResourceId,CEikMenuPane* aMenuPane)
{
   if ( aResourceId != R_VIDEO_MENU ) {return };
   dimButtonsWhenNotPlaying(aMenuPane);
   dimButtonsWhenNoItem(aMenuPane);
};

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
   if ( iEngine->GetEngineState() != EPPlaying ) {
   
 aMenuPane->SetItemDimmed( EVideoCmdAppStop, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppPause, ETrue );
   }
}

void CVideoAppUi:: dimButtonsWhenNoItem(CEikMenuPane* aMenuPane)
{
  if ( !iAppContainer->GetNumOfItemsInListBox() ) {

 aMenuPane->SetItemDimmed( EVideoCmdAppDocFileInfo, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppDocPlay, ETrue );

 aMenuPane->SetItemDimmed( EVideoCmdAppPlay, ETrue );
  }
}

21

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

More things that could be done

void CVideoAppUi::DynInitMenuPaneL(TInt aResourceId,CEikMenuPane* aMenuPane)
{
   if ( aResourceId != R_VIDEO_MENU ) {return };
   dimButtonsWhenNotPlaying(aMenuPane);
   dimButtonsWhenNoItem(aMenuPane);
};

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
   if ( iEngine->GetEngineState() != EPPlaying ) {
   
 aMenuPane->DimItem( EVideoCmdAppStop);

 aMenuPane->DimItem( EVideoCmdAppPause);
   }
}

void CVideoAppUi:: dimButtonsWhenNoItem(CEikMenuPane* aMenuPane)
{
  if ( !iAppContainer->GetNumOfItemsInListBox() ) {

 aMenuPane->DimItem( EVideoCmdAppDocFileInfo);

 aMenuPane->DimItem( EVideoCmdAppDocPlay);

 aMenuPane->DimItem( EVideoCmdAppPlay);
  }
}

22

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

And More...

void CVideoAppUi::DynInitMenuPaneL(CEikMenuPane* aMenuPane)
{
   dimButtonsWhenNotPlaying(aMenuPane);
   dimButtonsWhenNoItem(aMenuPane);
};

void CVideoAppUi::dimButtonsWhenNotPlaying(CEikMenuPane* aMenuPane)
{
   if ( iEngine->notPlaying() ) {
   
 aMenuPane->DimItem( EVideoCmdAppStop);

 aMenuPane->DimItem( EVideoCmdAppPause);
   }
}

void CVideoAppUi:: dimButtonsWhenNoItem(CEikMenuPane* aMenuPane)
{
  if ( iAppContainer->isListBoxEmpty() ) { return; };

  aMenuPane->DimItem( EVideoCmdAppDocFileInfo);
  aMenuPane->DimItem( EVideoCmdAppDocPlay);
  aMenuPane->DimItem( EVideoCmdAppPlay);
}

23

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Stepping Back

• Showed concrete examples (and solutions) of 
breaches of basic OO design principles visible in code

– Fixing them improved the design!

• Question: how can we avoid this ?

– be cautious ;-)

– get help by applying:

• Design principles and methodologies

– eg.: Responsibility Driven Design

• GRASP patterns, Design Patterns

• Idioms and Programming Practices

24

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Patterns

25

Friday 28 September 12



Wuyts Roel
 imec restricted 2007 26

• Christoffer Alexander

– “The Timeless Way of Building”, Christoffer Alexander,  
Oxford University Press, 1979, ISBN 0195024028 

– Structure of the book is magnificent

• Christmass is close ;-)

• More advanced than what computer science uses

– only the simple parts got mainstream

Bit of history...

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Alexander’s patterns

• “Each pattern describes a problem which occurs over 
and over again in our environment, and then 
describes the core of the solution to that problem, in 
such a way that you can use this solution a million 
times over, without doing it the same way twice”

– Alexander uses this as part of the solution to capture 
the “quality without a name”

27

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Illustrating Recurring Patterns...

28

Friday 28 September 12



Wuyts Roel
 imec restricted 2007 29

• Pattern name
– Increase of design vocabulary

• Problem description
– When to apply it, in what context to use it

• Solution description (generic !)
– The elements that make up the design, their 

relationships, responsibilities, and collaborations

• Consequences
– Results and trade-offs of applying the pattern

Essential Elements in a Pattern

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Responsibility Driven Design

• Metaphor – can compare to people

– Objects have responsibilities

– Objects collaborate

– Similar to how we conceive of people

• In RDD we ask questions like

– What are the responsibilities of this object

– Which roles does the object play

– Who does it collaborate with

• Domain model

– classes do NOT have responsibilities!

– they merely represent concepts + relations

– design is about realizing the software è someone has to do the work …  who ??

Understanding 
Responsibilities is 

key to good OO 
Design

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Responsibilities

• Two types of responsibilities
– Doing

• Doing something itself (e.g. creating an object, doing a 
calculation)

• Initiating action in other objects

• Controlling and coordinating activities in other objects

– Knowing

• Knowing about private encapsulated data

• Knowing about related objects

• Knowing about things it can derive or calculate

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Responsibilities and Methods

• Responsibilities are  assigned to classes during object design, 
and are reflected in methods

– We may declare the following:

• “a Sale is responsible for creating SalesLineItems” (doing)

• “a Sale is responsible for knowing its total” (knowing)

• Responsibilities related to “knowing”

– often inferable from the Domain Model
(because of the attributes and associations it illustrates)

– ! low representational gap !    –  LRG

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

GRASP Patterns

• guiding principles to help us assign responsibilities

• GRASP “Patterns” – guidelines
• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion 

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

4. Low Coupling Pattern

34

Pattern  Low Coupling  

Problem  How to stimulate low independance, reduce impact of change and 
increase reuse?  

Solution
 
Assign responsibilities such that your design exhibits low coupling.
Use this principle to evaluate and compare alternatives. 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Patroon

35

n Which design is better?
n Coupling to stable libraries/classes?
n Key principle for evaluating choices

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Patroon

• Coupling is a measure that shows how much a class is dependent on 
other classes

• X depends on Y:

– X has attribute of type Y

– X uses a service of Y

– X has method referencing Y (param, local variable)

– X inherits from Y (direct or indirect)

– X implements interface Y

– (X does not compile without Y)

• “evaluative” pattern:

– use it to evaluate alternatives

– try to reduce coupling

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Patroon

• Coupling is a measure that shows how much a class is dependent on 
other classes

• X depends on Y:

– X has attribute of type Y

– X uses a service of Y

– X has method referencing Y (param, local variable)

– X inherits from Y (direct or indirect)

– X implements interface Y

– (X does not compile without Y)

• “evaluative” pattern:

– use it to evaluate alternatives

– try to reduce coupling

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Patroon

• Coupling is a measure that shows how much a class is dependent on 
other classes

• X depends on Y:

– X has attribute of type Y

– X uses a service of Y

– X has method referencing Y (param, local variable)

– X inherits from Y (direct or indirect)

– X implements interface Y

– (X does not compile without Y)

• “evaluative” pattern:

– use it to evaluate alternatives

– try to reduce coupling

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Pattern

• Advantages of low coupling:

– reduce impact of changes (isolation)

– increase understandibility (more self-contained)

– enhance reuse (independance)

• Is not an absolute criterium

– Coupling is always there

• Inheritance is strong coupling !!

37

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Low Coupling Patroon: remarks

• Aim for low coupling with all design decisions

• Cannot be decoupled from other patterns

• Learn to draw the line (experience)

– do not pursue low coupling in the extreme

• Bloated and complex active objects doing all the work

• lots of passive objects that act as simple data repositories

– OO Systems are built from connected collaborating 
objects

• Coupling with standardized libraries is NOT a problem

• Coupling with unstable elements IS a problem 
38

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

5. High Cohesion Pattern

39

Pattern  High Cohesion  

Problem  How to retain focus, understandability and control of objects, while 
obtaining low coupling? 

Solution
 
Assign responsibilities such that the cohesion of an object remains 
high. Use this principle to evaluate and compare alternatives. 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

High Cohesion Patroon

40

n Cohesion: Object should have  strongly related operations or responsibilities
n Reduce fragmentation of responsibilities (complete set of responsibility)
n To be considered in context => register cannot be responsible for all register-related 

tasks

:Register :Sale

:Payment

makePayment() 1:makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

:Register
makePayment()

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

High Cohesion Patroon

nCohesion is a measure that shows how strong responsibilities of a 
class are coupled.

n Is an “evaluative” pattern:

¨ use it to evaluate alternatives

¨ aim for maximum cohesion

n (well-bounded behavior)

nCohesie î 

¨ number of methods ì (bloated classes)

¨ understandability î

¨ reuse î

¨ maintainability î

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

High Cohesion Pattern: remarks

• Aim for high cohesion in each design decision

• degree of collaboration

– Very low cohesion: a class has different responsibilities in widely varying functional domains

• class RDB-RPC-Interface: handles Remote Procedure Calls as well as access to relational databases

– Low cohesion: a class has exclusive responsibility for a complex task in one functional domain.

• class RDBInterface: completely responsible for accessing relational databases

• methods are coupled, but lots and very complex methods

– Average cohesion: a class has exclusive ‘lightweight’ responsibilities from several functional 
domains. The domains are logically connected to the class concept, but not which each other

• a class Company that is responsible to manage employees of a company as well as the financials

• occurs often in ‘global system’ classes !!

– High cohesion: a class has limited responsibilities in one functional domain, collaborating with 
other classes to fulfill tasks.

• klasse RDBInterface: partially responsible for interacting with relational databases

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

1. Controller Pattern

• Who is responsible for handling Systemoperations ?

43

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

???

Cashier

:SaleJFrame

presses button

onEnterItem()

1: enterItem(itemID, qty)

Presentation Layer
(Java applet)

Domain Layer

event

systemoperation

controller

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Controller Pattern

44

Pattern  Controller   

Problem  Who is responsible for handling system events ? 
 

Solution  Assign the responsibility to a class C representing one of the 
following choices:

• C is a facade controller: it represents the overall system,  a root 
object, the device that runs the software, or a major subsystem.

• C is a use case or session controller: it represents an artificial 
objects (see Pure Fabrication pattern) that handles all events from 
a use case or session

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

System operations and System events

• From analysis to design:

– Analysis: can group system operations in a conceptual 
“System” class

– Design: give responsibility for processing system 
operations to controller classes

• Controller classes are not part of the User Interface

• Model-View-Controller (MVC)

45

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

overall system

root object

artificial object

device

choice depends 
on other factors

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

overall system

root object

artificial object

device

choice depends 
on other factors

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

:Store
enterItem(upc, quantity)

overall system

root object

artificial object

device

choice depends 
on other factors

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

:Store
enterItem(upc, quantity)

overall system

root object

artificial object

:RegisterDevice
enterItem(upc, quantity)

device

choice depends 
on other factors

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Who controls System events?

enterItem(UPC, quantity)

:SystemCashier

endSale()

makePayment(amount)

:POSSystem
enterItem(upc, quantity)

:Store
enterItem(upc, quantity)

:ProcessSaleHandler
enterItem(upc, quantity)

overall system

root object

artificial object

:RegisterDevice
enterItem(upc, quantity)

device

choice depends 
on other factors

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Controller Pattern: Guidelines

• Limit the responsibility to “control and coordination”

– Controller = delegation pattern

 delegate real work to real objects

– Common mistake: fat controllers with too much 
behavior

• Only support a limited number of events in Facade 
controllers

47

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Controller Pattern: Use Case Controller Guidelines

• Use Case (UC) controllers

– consider when too much coupling and not enough 
cohesion in other controllers (factor system events)

– Treat all UC events in the same controller class

– Allow control on the order of events

– Keep information on state of UC (statefull session)

48

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Controller Pattern: Problems and Solutions

• “Bloated” controllers

– symptoms

• a single controller handling all system events

• controller not delegating work

• controller with many attributes, with system information, with 
duplicated information

– solutions

• add Use Case controllers

• design controllers that delegate tasks

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Controller Pattern: Advantages

• Increased potential for reuse

• domain-level processes handled by domain layer

• decouple GUI from domain level !

• Different GUI or different ways to access the domain level

• Reason about the state of the use case

• guarantee sequence of system operations

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example

51

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale1.1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

event

system operation

controller

makeLineItem(upc, qty)

To Avoid!

Controller 
Pattern

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

2. Creator Pattern

52

Pattern  Creator   

Problem  Who is responsible for creating instances of classes ? 
 

Solution  Assign a class B to create instances of a class A if:

• B is a composite of A objects (composition/aggregation)

• B contains A objects (contains)

• B holds instances of A objects (records)

• B closely collaborates with A objects

• B has the information needed for creating A objects

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Creator Pattern: example

Creation of “SalesLineItem” instances

:SalesLineItem

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by
*

Contains

1..*

Sale

date
time

total()

1: create(quantity)

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Creator Pattern: example

Creation of “SalesLineItem” instances

:SalesLineItem

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by
*

Contains

1..*

Sale

date
time

total()

1: create(quantity)

:Sale
makeLineItem(quantity)

makeLineItem()

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Creator Pattern: Inspiration from the Domain Model

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

3. Information Expert Pattern

• A very basic principle of responsibility assignment

• Assign a responsibility to the object that has the 
information necessary to fulfill it  -the information 
expert

– “That which has the information, does the work”

– Related to the principle of “low coupling”

 ð Localize work

55

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Expert Pattern

56

Pattern  (Information) Expert  

Problem  What is the basic principle to assign responsibilities to objects ? 
 

Solution  Assign responsibility to the class that has the information to fulfill it 
(the information expert)

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Expert Pattern: remarks

• Real-world analogy

– who predicts gains/losses in a company?

• the person with access to the date (Chief Financial Officer)

• Needed information to work out ‘responsibility’
        => spread over different objects

– “partial” experts that collaborate to obtain global 
information (interaction is required)

• Not necessarily the best solution (e.g. database 
access)

– See low coupling & high cohesion 

57

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Expert Patroon: example 1

nExample: Who is responsible for 
knowing the total of a “Sale”? 

nWho possesses the information?

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Expert Patroon: example 1

nExample: Who is responsible for 
knowing the total of a “Sale”? 

nWho possesses the information?
Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
ItemID

Described-by*

Contains

1..*

domein model

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

class diagram

(design model)Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1..*

getTotal()

getPrice()
getSubtotal()

:Sale
t = getTotal()

:Product
Specification

1.1: p = getPrice()

lineItems[i]:SalesLineItem

1*: st =getSubtotal()

Expert Pattern

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

What object should be responsible for knowing 
ProductSpecifications, given a key?

Take inspiration from the domain model

Expert Pattern: Example 2

60

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Applying Information Expert

61

: Map
<ProductDescription>

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Design for “enterItem”: 3 patterns applied

62

: List
<SalesLineItem>

: Map
<ProductDescription>

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

GRASP Patterns

• guiding principles to help us assign responsibilities

• GRASP “Patterns” – guidelines
• Controller

• Creator

• Information Expert

• Low Coupling

• High Cohesion 

• Polymorphism

• Pure Fabrication

• Indirection

• Protected Variations

Hs 17

Hs 25

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

6. Polymorphism

64

Pattern  Polymorphism  

Problem  How handle alternatives based on type? How to create pluggable 
software components? 

Solution
 
When related alternatives or behaviours vary by type (class), assign 
responsibility for the behavior -using polymorphic operations- to 
the types for which the behavior varies.

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Example

void CVideoAppUi::HandleCommandL(TInt aCommand)
{
   switch ( aCommand )
   {
	 case EAknSoftkeyExit:
	 	 case EAknSoftkeyBack:
	 	 case EEikCmdExit:
	 	 	 	 { Exit();  break; }
       
	 // Play command is selected
	 case EVideoCmdAppPlay:
	 	 	 { DoPlayL(); break; }

        // Stop command is selected
	 case EVideoCmdAppStop:
	 	 	 { DoStopL(); break; }
        
        // Pause command is selected
	 case EVideoCmdAppPause:
	 	 	 { DoPauseL(); break; }

	 // DocPlay command is selected
	 case EVideoCmdAppDocPlay:
	 	 	 { DoDocPlayL(); break; }

        // File info command is selected
	 	 case EVideoCmdAppDocFileInfo:
	 	 	 	 { DoGetFileInfoL(); break; }
...... 

65

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Replace case by Polymorphism

void CVideoAppUi::HandleCommandL(Command aCommand)
    {
	   aCommand.execute();
	  }

Create a Command class hierarchy, consisting of a (probably) abstract class 
AbstractCommand, and subclasses for every command supported. Implement execute on each 
of these classes

virtual void AbstractCommand::execute() = 0;

virtual void PlayCommand::execute() { ... do play command ...};

virtual void StopCommand::execute() { ... do stop command ...};

virtual void PauseCommand::execute() { ... do pause command ...};

virtual void DocPlayCommand::execute() { ... do docplay command ...};

virtual void FileInfoCommand::execute() { ... do file info command ...};

66

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

7. Pure Fabrication Pattern

67

Pattern  Pure Fabrication  

Problem  What object should have the responsibility, when you do not want to 
violate High Cohesion and Low Coupling, or other goals, but solutions 
offered by Expert (for example) are not appropriate?

 

Solution

 

Assign a cohesive set of responsibilities to an artificial or 
convenience class that does not represent a problem domain 
concept but is purely imaginary and fabricated to obtain a pure 
design with high cohesion and low coupling.

 

 

 
 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Pure Fabrication Pattern

• Where no appropriate class is present:  invent one

– Even if the class does not represent a problem domain concept

– “pure fabrication” = making something up: do when we’re 
desperate! 

• This is a compromise that often has to be made to preserve 
cohesion and low coupling

– Remember:  the software is not designed to simulate the 
domain, but operate in it

– The software does not always have to be identical to the real 
world

• Domain Model ≠ Design model

68

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Pure Fabrication Example

• Suppose Sale instances need to be saved in a database

• Option 1: assign this to the Sale class itself (Expert pattern)

– Implications of this solution:

• auxiliary database-operations need to be added as well

• coupling with particular database connection class

• saving objects in a database is a general service

• Option 2: create PersistentStorage class

– Result is generic and reusable class with low coupling and high cohesion

69

Pure Fabrication
=>  Low Coupling
      High Cohesion

Expert
=>High Coupling
    Low Cohesion

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

8. Indirection Pattern

70

Pattern  Indirection  

Problem  Where to assign a responsibility to avoid direct coupling between two 
(or more) things? How to de-couple objects so that low coupling is 
supported and reuse potential remains higher?

 

Solution

 

Assign the responsibility to an intermediate object to mediate 
between other components or services so that they are not 
directly coupled.

This intermediary creates an indirection between the other 
components.

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Indirection Pattern

• A common mechanism to reduce coupling

• Assign responsibility to an intermediate object to decouple two 
components

– coupling between two classes of different subsystems can 
introduce maintenance problems

• “most problems in computer science can be solved by another 
level of indirection”

– A large number of design patterns are special cases of indirection 
(Adapter, Facade, Observer)

Sale TaxSystemTaxSystemAdapter

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

9. Protected Variations Pattern

72

Pattern  Protected Variations  

Problem  How to design objects, subsystems, and systems so that the variations or 
instability of these elements does not have an undesirable impact on 
other elements ?

 

Solution

 

Identify points of predicted variation or instability; assign 
responsibilities to create a stable interface around them.

 

 

 
 

 

 

 

 

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Protected Variations – voorbeeld

• Video game companies make money by creating a game engine 

– many games use the same engine

– what if a game is to be ported to another console ???

• a wrapper object will have to delegate 3D graphics drawing to different console-level 
commands

• the wrapper is simpler to change than the entire game and all of its facets

• Wrapping the component in a stable interface means that when 
variations occur, only the wrapper class need be changed

– In other words, changes remain localized

– The impact of changes is controlled

FUNDAMENTAL PRINCIPLE IN SW DESIGN
73

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Protected Variations – Example

• Open DataBase Connectivity (ODBC/JDBC)

– These are packages that allow applications to access 
databases in a DB-independent way

• In spite of the fact that databases all use slightly different 
methods of communication

• It is possible due to an implementation of Protected Variations

– Users write code to use a generic interface

• An adapter converts generic method calls to DB and vice versa

74

Friday 28 September 12



Wuyts Roel
 imec restricted 2007

Conclusion

• Always try to apply and balance basic OO Design 
Principles

– Minimize Coupling

– Increase Cohesion

– Distribute Responsibilities

• Use and learn from established sources of 
information

– Responsibility Driven Design

– GRASP patterns

• Design Patterns: see later

75

Friday 28 September 12


