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Tom de Marco

You cannot control what you cannot measure
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Metrics are functions that assign numbers to 
products, processes and resources
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Software metrics are measurements which relate to 
software systems, processes or related documents
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Metrics compress system properties and traits into 
numbers

Let’s see some examples..
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Examples of size metrics

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994
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Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

‣ LOC - Number of Lines of Code

‣ NOS - Number of Statements

‣ NOC - Number of Children

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994
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Cyclomatic Complexity (CYCLO)

McCabe, 1976
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Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the 
number of independent paths through the code of a 
function

McCabe, 1976
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‣ The McCabe cyclomatic complexity (CYCLO) counts the 
number of independent paths through the code of a 
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‣ Good: it reveals the minimum number of tests to write
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Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the 
number of independent paths through the code of a 
function

‣ Good: it reveals the minimum number of tests to write

‣ Bad: its interpretation does not directly lead to improvement 
actions

McCabe, 1976
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Weighted Method Count (WMC)

Chidamber & Kemerer, 1994
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Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods 
(measured by the metric of your choice, usually CYCLO)

Chidamber & Kemerer, 1994

Friday 5 October 12



Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods 
(measured by the metric of your choice, usually CYCLO)

‣ Good: It is configurable, thus adaptable to our precise needs

Chidamber & Kemerer, 1994

Friday 5 October 12



Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods 
(measured by the metric of your choice, usually CYCLO)

‣ Good: It is configurable, thus adaptable to our precise needs

‣ Bad: Its interpretation does not directly lead to improvement 
actions

Chidamber & Kemerer, 1994

Friday 5 October 12



Coupling Between Objects (CBO)

Chidamber & Kemerer, 1994
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Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or 
attributes are used.

Chidamber & Kemerer, 1994
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Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or 
attributes are used.

‣ Good: CBO takes into account real dependencies, not just 
declared ones
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Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or 
attributes are used.

‣ Good: CBO takes into account real dependencies, not just 
declared ones

‣ Bad: No differentiation of types and/or intensity of coupling

Chidamber & Kemerer, 1994
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McCall, 1977
Boehm, 1978
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Metrics help to assess and improve quality!

Do they?
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McCall, 1977
Boehm, 1978

?
Problems..
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McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not 
causes of problems

‣ in isolation, metrics do not lead 
to improvement actions

‣ Implicit Mapping

‣ we do not reason in terms of 
metrics, but in terms of design 
(principles)
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2 big obstacles in using metrics:

Thresholds make metrics hard to interpret

Granularity makes metrics hard to use in isolation
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How do I get an 
initial understanding of a system?
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Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31
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Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

And now what?
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We need means to compare
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We need means to compare

coupling?
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We need means to compare

coupling?

hierarchies?
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Characterizing Systems with Metrics
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The Overview Pyramid provides a metrics 
overview

Inheritance

Size Communication

Lanza & Marinescu, 2006
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The Overview Pyramid provides a metrics 
overview

NOP 19
NOC 384

NOM 3618
LOC 35175

CYCLO 5579

Size
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The Overview Pyramid provides a metrics 
overview

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618

0.15 LOC 35175
CYCLO 5579

Size
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The Overview Pyramid provides a metrics 
overview

3618 NOM

15128 CALLS

8590 FANOUT

Communication
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The Overview Pyramid provides a metrics 
overview

3618 NOM 4.18
15128 CALLS 0.56
8590 FANOUT

Communication
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The Overview Pyramid provides a metrics 
overview

ANDC 0.31
AHH 0.12

Inheritance
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The Overview Pyramid provides a metrics 
overview
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Obtaining Thresholds

Java C++

LOW AVG HIGH LOW AVG HIGH

CYCLO/
LOC

0.16 0.20 0.24 0.20 0.25 0.30

LOC/NOM 7 10 13 5 10 16

NOM/NOC 4 7 10 4 9 15

...
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The Overview Pyramid provides a metrics 
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19
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The Overview Pyramid provides a metrics 
overview
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The Overview Pyramid provides a metrics 
overview

Inheritance

Size Communication

close to highclose to averageclose to low
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How do I improve my code?

‣ Quality is more than zero bugs

‣ Quality is about design principles, design heuristics, and 
best practices

‣ Breaking them leads to

‣ Code deterioration

‣ Design problems ~ Maintenance problems
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Imagine...

You change a small design 
fragment...

...and one third of all 
classes require changes!
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Design Problems

‣ Expensive

‣ Frequent

‣ Unavoidable

‣ How can we detect and eliminate them?
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M. Lanza, R. Marinescu
“Object-Oriented Metrics in Practice”

Springer, 2006
ISBN 3-540-24429-8
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Identity Disharmony

How do I 
define 

myself?
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Identity Disharmony

How do I 
define 

myself?

God Class
Data Class
Brain Class

Feature Envy
Brain Method
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Collaboration Disharmony

How do I 
interact with 

others?
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Collaboration Disharmony

How do I 
interact with 

others?

Intensive Coupling
Dispersive Coupling

Shotgun Surgery
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Classification Disharmony

How do I define 
myself with respect to 

my ancestors and 
descendants?
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Classification Disharmony

How do I define 
myself with respect to 

my ancestors and 
descendants?

Futile Hierarchy
Tradition Breaker

Refused Parent Bequest
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God Class

“In a good object-oriented design
the intelligence of a system is 

uniformly distributed among the 
top-level classes.”

Arthur Riel, 1996
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God Classes
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God Classes

‣ God Classes tend to centralize the intelligence of the 
system, to do everything and to use data from small data-
classes
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God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

‣ God Classes

‣ are complex: high WMC

‣ are not cohesive: low TCC

‣ access external data: ATFD 
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God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

‣ God Classes

‣ are complex: high WMC

‣ are not cohesive: low TCC

‣ access external data: ATFD 
Compose metrics into queries 

using logical operators
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Detection Strategies

‣ Detection strategies are metric-based queries to detect 
design flaws

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem
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Design Flaws do not come alone
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Characteristics of a God Class
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Heavily accesses data 
of other “lightweight” 
classes, either 
directly or using 
accessor
methods.

Characteristics of a God Class
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Heavily accesses data 
of other “lightweight” 
classes, either 
directly or using 
accessor
methods.

Is large

Has a lot of 
non-communicative 
behavior

Characteristics of a God Class
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Heavily accesses data 
of other “lightweight” 
classes, either 
directly or using 
accessor
methods.

Is large

Has a lot of 
non-communicative 
behavior

Characteristics of a God Class

God
Class
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God Class Detection Strategy

ATFD > FEW

Class uses directly more than a 

few attributes of other classes

WMC ≥ VERY HIGH

Functional complexity of the 

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass
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And Now?
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Follow A Clear and Repeatable Process
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Follow A Clear and Repeatable Process
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Follow A Clear and Repeatable Process
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Follow A Clear and Repeatable Process

Do not reason about quality in terms of numbers!
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Metrics are only half the truth
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Can we understand the beauty of a painting by 
measuring its frame and counting its colors?
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Lecture 05
Software Visualization
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Source Code = Text
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Programming = Writing
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/***************************************************************************/
/*                               micro-Max,                                */
/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller  */
/***************************************************************************/
/* version 3.2 (2000 characters) features:                                 */
/* - recursive negamax search                                              */
/* - quiescence search with recaptures                                     */
/* - recapture extensions                                                  */
/* - (internal) iterative deepening                                        */
/* - best-move-first 'sorting'                                             */
/* - a hash table storing score and best move                              */
/* - full FIDE rules (expt minor ptomotion) and move-legality checking     */

#define F(I,S,N) for(I=S;I<N;I++)
#define W(A) while(A)
#define K(A,B) *(int*)(T+A+(B&8)+S*(B&7))
#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)

#define U 16777224
struct _ {int K,V;char X,Y,D;} A[U];           /* hash table, 16M+8 entries*/

int V=112,M=136,S=128,I=8e4,C=799,Q,N,i;       /* V=0x70=rank mask, M=0x88 */

char O,K,L,
w[]={0,1,1,3,-1,3,5,9},                        /* relative piece values    */
o[]={-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /* step-vector lists */
     7,-1,11,6,8,3,6,                          /* 1st dir. in o[] per piece*/
     6,3,5,7,4,5,3,6},                         /* initial piece setup      */
b[129],                                        /* board: half of 16x8+dummy*/
T[1035],                                       /* hash translation table   */

n[]=".?+nkbrq?*?NKBRQ";                        /* piece symbols on printout*/

D(k,q,l,e,J,Z,E,z,n)    /* recursive minimax search, k=moving side, n=depth*/
int k,q,l,e,J,Z,E,z,n;  /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/
{                       /* e=score, z=prev.dest; J,Z=hashkeys; return score*/
 int j,r,m,v,d,h,i=9,F,G;
 char t,p,u,x,y,X,Y,H,B;
 struct _*a=A;
                                               /* lookup pos. in hash table*/
 j=(k*E^J)&U-9;                                /* try 8 consec. locations  */
 W((h=A[++j].K)&&h-Z&&--i);                    /* first empty or match     */
 a+=i?j:0;                                     /* dummy A[0] if miss & full*/
 if(a->K)                                      /* hit: pos. is in hash tab */
 {d=a->D;v=a->V;X=a->X;                        /* examine stored data      */
  if(d>=n)                                     /* if depth sufficient:     */
  {if(v>=l|X&S&&v<=q|X&8)return v;             /* use if window compatible */
   d=n-1;                                      /* or use as iter. start    */
  }X&=~M;Y=a->Y;                               /*      with best-move hint */
  Y=d?Y:0;                                     /* don't try best at d=0    */
 }else d=X=Y=0;                                /* start iter., no best yet */
 N++;                                          /* node count (for timing)  */
 W(d++<n|z==8&N<1e7&d<98)                      /* iterative deepening loop */
 {x=B=X;                                       /* start scan at prev. best */
  Y|=8&Y>>4;                                   /* request try noncastl. 1st*/
  m=d>1?-I:e;                                  /* unconsidered:static eval */
  do{u=b[x];                                   /* scan board looking for   */
   if(u&k)                                     /*  own piece (inefficient!)*/
   {r=p=u&7;                                   /* p = piece type (set r>0) */
    j=o[p+16];                                 /* first step vector f.piece*/
    W(r=p>2&r<0?-r:-o[++j])                    /* loop over directions o[] */
    {A:                                        /* resume normal after best */
     y=x;F=G=S;                                /* (x,y)=move, (F,G)=castl.R*/
     do{H=y+=r;                                /* y traverses ray          */
      if(Y&8)H=y=Y&~M;                         /* sneak in prev. best move */
      if(y&M)break;                            /* board edge hit           */
      if(p<3&y==E)H=y^16;                      /* shift capt.sqr. H if e.p.*/
      t=b[H];if(t&k|p<3&!(r&7)!=!t)break;      /* capt. own, bad pawn mode */
      i=99*w[t&7];                             /* value of capt. piece t   */

      if(i<0||E-S&&b[E]&&y-E<2&E-y<2)m=I;      /* K capt. or bad castling  */
      if(m>=l)goto C;                          /* abort on fail high       */

    
      if(h=d-(y!=z))                           /* remaining depth(-recapt.)*/
      {v=p<6?b[x+8]-b[y+8]:0;                  /* center positional pts.   */
       b[G]=b[H]=b[x]=0;b[y]=u&31;             /* do move, strip virgin-bit*/
       if(!(G&M)){b[F]=k+6;v+=30;}             /* castling: put R & score  */
       if(p<3)                                 /* pawns:                   */
       {v-=9*(((x-2)&M||b[x-2]!=u)+            /* structure, undefended    */
              ((x+2)&M||b[x+2]!=u)-1);         /*        squares plus bias */
        if(y+r+1&S){b[y]|=7;i+=C;}             /* promote p to Q, add score*/
       }
       v=-D(24-k,-l-(l>e),m>q?-m:-q,-e-v-i,    /* recursive eval. of reply */
            J+J(0),Z+J(8)+G-S,F,y,h);          /* J,Z: hash keys           */
       v-=v>e;                                 /* delayed-gain penalty     */
       if(z==9)                                /* called as move-legality  */
       {if(v!=-I&x==K&y==L)                    /*   checker: if move found */
        {Q=-e-i;O=F;return l;}                 /*   & not in check, signal */
        v=m;                                   /* (prevent fail-lows on    */
       }                                       /*   K-capt. replies)       */
       b[G]=k+38;b[F]=b[y]=0;b[x]=u;b[H]=t;    /* undo move,G can be dummy */
       if(Y&8){m=v;Y&=~8;goto A;}              /* best=1st done,redo normal*/
       if(v>m){m=v;X=x;Y=y|S&G;}               /* update max, mark with S  */
      }                                        /*          if non castling */
      t+=p<5;                                  /* fake capt. for nonsliding*/
      if(p<3&6*k+(y&V)==S                      /* pawn on 3rd/6th, or      */
          ||(u&~24)==36&j==7&&                 /* virgin K moving sideways,*/
          G&M&&b[G=(x|7)-(r>>1&7)]&32          /* 1st, virgin R in corner G*/
          &&!(b[G^1]|b[G^2])                   /* 2 empty sqrs. next to R  */
      ){F=y;t--;}                              /* unfake capt., enable e.p.*/
     }W(!t);                                   /* if not capt. continue ray*/
  }}}W((x=x+9&~M)-B);                          /* next sqr. of board, wrap */
C:if(m>I/4|m<-I/4)d=99;                        /* mate is indep. of depth  */
  m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2;         /* best loses K: (stale)mate*/
  if(!a->K|(a->X&M)!=M|a->D<=d)                /* if new/better type/depth:*/
  {a->K=Z;a->V=m;a->D=d;A->K=0;                /* store in hash,dummy stays*/
   a->X=X|8*(m>q)|S*(m<l);a->Y=Y;              /* empty, type (limit/exact)*/
  }                                            /*    encoded in X S,8 bits */
/*if(z==8)printf("%2d ply, %9d searched, %6d by (%2x,%2x)
\n",d-1,N,m,X,Y&0x77);*/
 }
 if(z&8){K=X;L=Y&~M;}
 return m;                                     
}

main()
{
 int j,k=8,*p,c[9];

 F(i,0,8)
 {b[i]=(b[i+V]=o[i+24]+40)+8;b[i+16]=18;b[i+96]=9;   /* initial board setup*/
  F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5);   /* center-pts table   */
 }                                                   /*(in unused half b[])*/
 F(i,M,1035)T[i]=random()>>9;

 W(1)                                                /* play loop          */
 {F(i,0,121)printf(" %c",i&8&&(i+=7)?10:n[b[i]&15]); /* print board        */
  p=c;W((*p++=getchar())>10);                        /* read input line    */
  N=0;
  if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else  /* parse entered move */
   D(k,-I,I,Q,1,1,O,8,0);                            /* or think up one    */
  F(i,0,U)A[i].K=0;                                  /* clear hash table   */
  if(D(k,-I,I,Q,1,1,O,9,2)==I)k^=24;                 /* check legality & do*/
 }
}
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Software... Visualization?
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preemptive 
disclaimer

no silver bullet

visualization is 
only a means, 
not the end
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not software visualization
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Software Visualization

‣ Program Visualization: “The visualization of the actual 
program code or data structures in static or dynamic form”

‣ Algorithm Visualization: “The visualization of the higher-
level abstractions which describe software”

Algorithm
Visualization

static algorithm
visualization

algorithm
animation

Program
Visualization

static
code

visualization

static
data

visualization

data
animation

code 
animation
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Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are 
several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

‣ How to visualize

‣ Limited time

‣ Limited resources
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Program Visualization

‣ “The visualization of the actual program code or data 
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems, 
layout issues, HCI issues, GUI issues, lack of conventions 
(colors, shapes, etc.)

‣ Software Aspects

‣ Granularity (complete systems, subsystems, modules, classes, etc.)

‣ When to apply (first contact, known/unknown parts, forward 
engineering?)

‣ Methodology
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Static Code Visualization

‣ The visualization of information that can be extracted from 
a system at “compile-time”

‣ Directly influenced by programming languages and their 
paradigms

‣ Object-Oriented: classes, methods, attributes, inheritance, ...

‣ Procedural: procedures, invocations, imports, ...

‣ Functional: functions, function calls, ...
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Treemaps

‣ Pros

‣ 100% screen usage

‣ Scalability

‣ Cons

‣ Interpretation

‣ Information overload

‣ Reflections

‣ Excellent for hierarchical data
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Softwarenaut

‣ Pros

‣ Intuitive, metrics-based, 
interactive visualization

‣ Cons

‣ Distance to source code

‣ Reflections

‣ The best vertical software 
exploration tool ever 
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Euclidean Cones

‣ Pros

‣ More information than 2D

‣ Cons

‣ Lack of depth

‣ Navigation
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Hyperbolic Trees

‣ Pros

‣ Good focus

‣ Dynamic

‣ Cons

‣ Copyrighted!
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Rigi

‣ The grandfather of software 
visualization tools

‣ Pros

‣ Scalability

‣ Domain-independent

‣ Cons

‣ Lack of code semantics
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The Evolution Radar
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Increasing Information Granularity: The Class 
Blueprint

Initialize Interface Internal Accessor Attribute

invocation and access direction 
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Detailing Class Blueprints

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribute

internal access

external
access

Access

Invocation

Initialize Interface Internal Accessor Attribute
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A Pattern Language based on Class Blueprints
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number of 
lines of code

number of attributes

number of methods

The Polymetric View Principle
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System Complexity View
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a simple and powerful concept
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Reflections on Static Visualization 

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

‣ Scaling up is possible at the expense of semantics

‣ Orthogonally

‣ Without programming knowledge it’s only colored boxes and 
arrows..
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Visualizing Software Systems 
as Code Cities
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The City Metaphor
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The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

package metric district property

nesting level color

class metric building property

number of methods (NOM) height

number of attributes (NOA) width, length
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Welcome to ArgoUML City

ArgoUML City
pop. 2,522 classes, 143 

packages
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Software Topology

Azureus City
pop. 4’500+ classes
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Software Topology

Azureus City
pop. 4’500+ classes
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Crossing System Boundaries

Azureus ArgoUML
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Scalability?

Cincom Smalltalk City
pop. 8,000+ classes
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Mapping Metrics

identity

linear

boxplot-based

threshold-based
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