
Ontwerp van SoftwareSystemen

3 Metrics and Software
Visualization

Roel Wuyts
OSS 2012-2013

Courtesy of Prof. Dr. Michele Lanza
http://www.inf.unisi.ch/faculty/lanza/

[A cool and excellent teacher and person]

Friday 5 October 12

Software Design & Evolution
Michele Lanza

Friday 5 October 12

Lecture 04
Metrics & Problem Detection

Friday 5 October 12

Reference

M. Lanza, R. Marinescu
“Object-Oriented Metrics in Practice”

Springer, 2006
ISBN 3-540-24429-8

Friday 5 October 12

Tom de Marco

You cannot control what you cannot measure

Friday 5 October 12

Metrics are functions that assign numbers to
products, processes and resources

Friday 5 October 12

Software metrics are measurements which relate to
software systems, processes or related documents

Friday 5 October 12

Metrics compress system properties and traits into
numbers

Let’s see some examples..

Friday 5 October 12

Examples of size metrics

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Examples of size metrics

‣ NOM - Number of Methods

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

‣ LOC - Number of Lines of Code

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

‣ LOC - Number of Lines of Code

‣ NOS - Number of Statements

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Examples of size metrics

‣ NOM - Number of Methods

‣ NOA - Number of Attributes

‣ LOC - Number of Lines of Code

‣ NOS - Number of Statements

‣ NOC - Number of Children

Chidamber & Kemerer, 1994
Lorenz & Kidd, 1994

Friday 5 October 12

Cyclomatic Complexity (CYCLO)

McCabe, 1976

Friday 5 October 12

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the
number of independent paths through the code of a
function

McCabe, 1976

Friday 5 October 12

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the
number of independent paths through the code of a
function

‣ Good: it reveals the minimum number of tests to write

McCabe, 1976

Friday 5 October 12

Cyclomatic Complexity (CYCLO)

‣ The McCabe cyclomatic complexity (CYCLO) counts the
number of independent paths through the code of a
function

‣ Good: it reveals the minimum number of tests to write

‣ Bad: its interpretation does not directly lead to improvement
actions

McCabe, 1976

Friday 5 October 12

Weighted Method Count (WMC)

Chidamber & Kemerer, 1994

Friday 5 October 12

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually CYCLO)

Chidamber & Kemerer, 1994

Friday 5 October 12

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually CYCLO)

‣ Good: It is configurable, thus adaptable to our precise needs

Chidamber & Kemerer, 1994

Friday 5 October 12

Weighted Method Count (WMC)

‣ WMC sums up the complexity of a class’ methods
(measured by the metric of your choice, usually CYCLO)

‣ Good: It is configurable, thus adaptable to our precise needs

‣ Bad: Its interpretation does not directly lead to improvement
actions

Chidamber & Kemerer, 1994

Friday 5 October 12

Coupling Between Objects (CBO)

Chidamber & Kemerer, 1994

Friday 5 October 12

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or
attributes are used.

Chidamber & Kemerer, 1994

Friday 5 October 12

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or
attributes are used.

‣ Good: CBO takes into account real dependencies, not just
declared ones

Chidamber & Kemerer, 1994

Friday 5 October 12

Coupling Between Objects (CBO)

‣ CBO shows the number of classes from which methods or
attributes are used.

‣ Good: CBO takes into account real dependencies, not just
declared ones

‣ Bad: No differentiation of types and/or intensity of coupling

Chidamber & Kemerer, 1994

Friday 5 October 12

McCall, 1977
Boehm, 1978

Friday 5 October 12

Metrics help to assess and improve quality!

Do they?

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not
causes of problems

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not
causes of problems

‣ in isolation, metrics do not lead
to improvement actions

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not
causes of problems

‣ in isolation, metrics do not lead
to improvement actions

‣ Implicit Mapping

Friday 5 October 12

McCall, 1977
Boehm, 1978

?
Problems..

‣ Metrics granularity

‣ metrics capture symptoms,not
causes of problems

‣ in isolation, metrics do not lead
to improvement actions

‣ Implicit Mapping

‣ we do not reason in terms of
metrics, but in terms of design
(principles)

Friday 5 October 12

2 big obstacles in using metrics:

Thresholds make metrics hard to interpret

Granularity makes metrics hard to use in isolation

Friday 5 October 12

How do I get an
initial understanding of a system?

Friday 5 October 12

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

Friday 5 October 12

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

Friday 5 October 12

Metric Value
LOC 35175
NOM 3618
NOC 384
CYCLO 5579
NOP 19
CALLS 15128
FANOUT 8590
AHH 0.12
ANDC 0.31

And now what?

Friday 5 October 12

We need means to compare

Friday 5 October 12

We need means to compare

coupling?

Friday 5 October 12

We need means to compare

coupling?

hierarchies?

Friday 5 October 12

Characterizing Systems with Metrics

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

Inheritance

Size Communication

Lanza & Marinescu, 2006

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

NOP 19
NOC 384

NOM 3618
LOC 35175

CYCLO 5579

Size

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618

0.15 LOC 35175
CYCLO 5579

Size

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

3618 NOM

15128 CALLS

8590 FANOUT

Communication

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

3618 NOM 4.18
15128 CALLS 0.56
8590 FANOUT

Communication

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

Inheritance

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

Friday 5 October 12

Obtaining Thresholds

Java C++

LOW AVG HIGH LOW AVG HIGH

CYCLO/
LOC

0.16 0.20 0.24 0.20 0.25 0.30

LOC/NOM 7 10 13 5 10 16

NOM/NOC 4 7 10 4 9 15

...

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

ANDC 0.31
AHH 0.12

20.21 NOP 19

9.42 NOC 384
9.72 NOM 3618 3618 NOM 4.18

0.15 LOC 35175 15128 CALLS 0.56
CYCLO 5579 8590 FANOUT

Inheritance

Size Communication

close to highclose to averageclose to low

Friday 5 October 12

The Overview Pyramid provides a metrics
overview

Inheritance

Size Communication

close to highclose to averageclose to low

Friday 5 October 12

How do I improve my code?

‣ Quality is more than zero bugs

‣ Quality is about design principles, design heuristics, and
best practices

‣ Breaking them leads to

‣ Code deterioration

‣ Design problems ~ Maintenance problems

Friday 5 October 12

Imagine...

You change a small design
fragment...

...and one third of all
classes require changes!

Friday 5 October 12

Design Problems

‣ Expensive

‣ Frequent

‣ Unavoidable

‣ How can we detect and eliminate them?

Friday 5 October 12

Reference

M. Lanza, R. Marinescu
“Object-Oriented Metrics in Practice”

Springer, 2006
ISBN 3-540-24429-8

Friday 5 October 12

Identity Disharmony

How do I
define

myself?

Friday 5 October 12

Identity Disharmony

How do I
define

myself?

God Class
Data Class
Brain Class

Feature Envy
Brain Method

Friday 5 October 12

Collaboration Disharmony

How do I
interact with

others?

Friday 5 October 12

Collaboration Disharmony

How do I
interact with

others?

Intensive Coupling
Dispersive Coupling

Shotgun Surgery

Friday 5 October 12

Classification Disharmony

How do I define
myself with respect to

my ancestors and
descendants?

Friday 5 October 12

Classification Disharmony

How do I define
myself with respect to

my ancestors and
descendants?

Futile Hierarchy
Tradition Breaker

Refused Parent Bequest

Friday 5 October 12

God Class

“In a good object-oriented design
the intelligence of a system is

uniformly distributed among the
top-level classes.”

Arthur Riel, 1996

Friday 5 October 12

God Classes

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

‣ God Classes

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

‣ God Classes

‣ centralize the intelligence of the system

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

Friday 5 October 12

God Classes

‣ God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small data-
classes

‣ God Classes tend

‣ to centralize the intelligence of the system

‣ to do everything and

‣ to use data from small data-classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

Friday 5 October 12

God Classes

Friday 5 October 12

God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

Friday 5 October 12

God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

‣ God Classes

‣ are complex: high WMC

‣ are not cohesive: low TCC

‣ access external data: ATFD

Friday 5 October 12

God Classes

‣ God Classes

‣ centralize the intelligence of the system

‣ do everything

‣ use data from small data-classes

‣ God Classes

‣ are complex: high WMC

‣ are not cohesive: low TCC

‣ access external data: ATFD
Compose metrics into queries

using logical operators

Friday 5 October 12

Detection Strategies

‣ Detection strategies are metric-based queries to detect
design flaws

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem

Friday 5 October 12

Design Flaws do not come alone

God

Class

Brain

Class

Feature

Envy

Data

Class

Brain

Method

Significant

Duplication

Intensive

Coupling

Extensive

Coupling

Shotgun

Surgery

Tradition

Breaker

Refused

Parent

Bequest

uses

has

is

has

has

has (partial)

is partially

has

is

is

has

Futile

Hierarchy

uses

has

has

is

has (subclass)

Classification

Disharmonies

Identity

Disharmonies

Collaboration

Disharmonies

Friday 5 October 12

Characteristics of a God Class

Friday 5 October 12

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Characteristics of a God Class

Friday 5 October 12

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Characteristics of a God Class

Friday 5 October 12

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Has a lot of
non-communicative
behavior

Characteristics of a God Class

Friday 5 October 12

Heavily accesses data
of other “lightweight”
classes, either
directly or using
accessor
methods.

Is large

Has a lot of
non-communicative
behavior

Characteristics of a God Class

God
Class

Friday 5 October 12

God Class Detection Strategy

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ≥ VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Friday 5 October 12

And Now?

Friday 5 October 12

Follow A Clear and Repeatable Process

Friday 5 October 12

Follow A Clear and Repeatable Process

Friday 5 October 12

Follow A Clear and Repeatable Process

Friday 5 October 12

Follow A Clear and Repeatable Process

Do not reason about quality in terms of numbers!

Friday 5 October 12

Metrics are only half the truth

Friday 5 October 12

Can we understand the beauty of a painting by
measuring its frame and counting its colors?

Friday 5 October 12

Lecture 05
Software Visualization

Friday 5 October 12

Source Code = Text
Friday 5 October 12

Programming = Writing

Friday 5 October 12

/***/
/* micro-Max, */
/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller */
/***/
/* version 3.2 (2000 characters) features: */
/* - recursive negamax search */
/* - quiescence search with recaptures */
/* - recapture extensions */
/* - (internal) iterative deepening */
/* - best-move-first 'sorting' */
/* - a hash table storing score and best move */
/* - full FIDE rules (expt minor ptomotion) and move-legality checking */

#define F(I,S,N) for(I=S;I<N;I++)
#define W(A) while(A)
#define K(A,B) *(int*)(T+A+(B&8)+S*(B&7))
#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)

#define U 16777224
struct _ {int K,V;char X,Y,D;} A[U]; /* hash table, 16M+8 entries*/

int V=112,M=136,S=128,I=8e4,C=799,Q,N,i; /* V=0x70=rank mask, M=0x88 */

char O,K,L,
w[]={0,1,1,3,-1,3,5,9}, /* relative piece values */
o[]={-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /* step-vector lists */
 7,-1,11,6,8,3,6, /* 1st dir. in o[] per piece*/
 6,3,5,7,4,5,3,6}, /* initial piece setup */
b[129], /* board: half of 16x8+dummy*/
T[1035], /* hash translation table */

n[]=".?+nkbrq?*?NKBRQ"; /* piece symbols on printout*/

D(k,q,l,e,J,Z,E,z,n) /* recursive minimax search, k=moving side, n=depth*/
int k,q,l,e,J,Z,E,z,n; /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/
{ /* e=score, z=prev.dest; J,Z=hashkeys; return score*/
 int j,r,m,v,d,h,i=9,F,G;
 char t,p,u,x,y,X,Y,H,B;
 struct _*a=A;
 /* lookup pos. in hash table*/
 j=(k*E^J)&U-9; /* try 8 consec. locations */
 W((h=A[++j].K)&&h-Z&&--i); /* first empty or match */
 a+=i?j:0; /* dummy A[0] if miss & full*/
 if(a->K) /* hit: pos. is in hash tab */
 {d=a->D;v=a->V;X=a->X; /* examine stored data */
 if(d>=n) /* if depth sufficient: */
 {if(v>=l|X&S&&v<=q|X&8)return v; /* use if window compatible */
 d=n-1; /* or use as iter. start */
 }X&=~M;Y=a->Y; /* with best-move hint */
 Y=d?Y:0; /* don't try best at d=0 */
 }else d=X=Y=0; /* start iter., no best yet */
 N++; /* node count (for timing) */
 W(d++<n|z==8&N<1e7&d<98) /* iterative deepening loop */
 {x=B=X; /* start scan at prev. best */
 Y|=8&Y>>4; /* request try noncastl. 1st*/
 m=d>1?-I:e; /* unconsidered:static eval */
 do{u=b[x]; /* scan board looking for */
 if(u&k) /* own piece (inefficient!)*/
 {r=p=u&7; /* p = piece type (set r>0) */
 j=o[p+16]; /* first step vector f.piece*/
 W(r=p>2&r<0?-r:-o[++j]) /* loop over directions o[] */
 {A: /* resume normal after best */
 y=x;F=G=S; /* (x,y)=move, (F,G)=castl.R*/
 do{H=y+=r; /* y traverses ray */
 if(Y&8)H=y=Y&~M; /* sneak in prev. best move */
 if(y&M)break; /* board edge hit */
 if(p<3&y==E)H=y^16; /* shift capt.sqr. H if e.p.*/
 t=b[H];if(t&k|p<3&!(r&7)!=!t)break; /* capt. own, bad pawn mode */
 i=99*w[t&7]; /* value of capt. piece t */

 if(i<0||E-S&&b[E]&&y-E<2&E-y<2)m=I; /* K capt. or bad castling */
 if(m>=l)goto C; /* abort on fail high */

 if(h=d-(y!=z)) /* remaining depth(-recapt.)*/
 {v=p<6?b[x+8]-b[y+8]:0; /* center positional pts. */
 b[G]=b[H]=b[x]=0;b[y]=u&31; /* do move, strip virgin-bit*/
 if(!(G&M)){b[F]=k+6;v+=30;} /* castling: put R & score */
 if(p<3) /* pawns: */
 {v-=9*(((x-2)&M||b[x-2]!=u)+ /* structure, undefended */
 ((x+2)&M||b[x+2]!=u)-1); /* squares plus bias */
 if(y+r+1&S){b[y]|=7;i+=C;} /* promote p to Q, add score*/
 }
 v=-D(24-k,-l-(l>e),m>q?-m:-q,-e-v-i, /* recursive eval. of reply */
 J+J(0),Z+J(8)+G-S,F,y,h); /* J,Z: hash keys */
 v-=v>e; /* delayed-gain penalty */
 if(z==9) /* called as move-legality */
 {if(v!=-I&x==K&y==L) /* checker: if move found */
 {Q=-e-i;O=F;return l;} /* & not in check, signal */
 v=m; /* (prevent fail-lows on */
 } /* K-capt. replies) */
 b[G]=k+38;b[F]=b[y]=0;b[x]=u;b[H]=t; /* undo move,G can be dummy */
 if(Y&8){m=v;Y&=~8;goto A;} /* best=1st done,redo normal*/
 if(v>m){m=v;X=x;Y=y|S&G;} /* update max, mark with S */
 } /* if non castling */
 t+=p<5; /* fake capt. for nonsliding*/
 if(p<3&6*k+(y&V)==S /* pawn on 3rd/6th, or */
 ||(u&~24)==36&j==7&& /* virgin K moving sideways,*/
 G&M&&b[G=(x|7)-(r>>1&7)]&32 /* 1st, virgin R in corner G*/
 &&!(b[G^1]|b[G^2]) /* 2 empty sqrs. next to R */
){F=y;t--;} /* unfake capt., enable e.p.*/
 }W(!t); /* if not capt. continue ray*/
 }}}W((x=x+9&~M)-B); /* next sqr. of board, wrap */
C:if(m>I/4|m<-I/4)d=99; /* mate is indep. of depth */
 m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2; /* best loses K: (stale)mate*/
 if(!a->K|(a->X&M)!=M|a->D<=d) /* if new/better type/depth:*/
 {a->K=Z;a->V=m;a->D=d;A->K=0; /* store in hash,dummy stays*/
 a->X=X|8*(m>q)|S*(m<l);a->Y=Y; /* empty, type (limit/exact)*/
 } /* encoded in X S,8 bits */
/*if(z==8)printf("%2d ply, %9d searched, %6d by (%2x,%2x)
\n",d-1,N,m,X,Y&0x77);*/
 }
 if(z&8){K=X;L=Y&~M;}
 return m;
}

main()
{
 int j,k=8,*p,c[9];

 F(i,0,8)
 {b[i]=(b[i+V]=o[i+24]+40)+8;b[i+16]=18;b[i+96]=9; /* initial board setup*/
 F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5); /* center-pts table */
 } /*(in unused half b[])*/
 F(i,M,1035)T[i]=random()>>9;

 W(1) /* play loop */
 {F(i,0,121)printf(" %c",i&8&&(i+=7)?10:n[b[i]&15]); /* print board */
 p=c;W((*p++=getchar())>10); /* read input line */
 N=0;
 if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else /* parse entered move */
 D(k,-I,I,Q,1,1,O,8,0); /* or think up one */
 F(i,0,U)A[i].K=0; /* clear hash table */
 if(D(k,-I,I,Q,1,1,O,9,2)==I)k^=24; /* check legality & do*/
 }
}

Friday 5 October 12

Software... Visualization?
Friday 5 October 12

Friday 5 October 12

preemptive
disclaimer

no silver bullet

visualization is
only a means,
not the end

Friday 5 October 12

Friday 5 October 12

not software visualization

Friday 5 October 12

Software Visualization

‣ Program Visualization: “The visualization of the actual
program code or data structures in static or dynamic form”

‣ Algorithm Visualization: “The visualization of the higher-
level abstractions which describe software”

Algorithm
Visualization

static algorithm
visualization

algorithm
animation

Program
Visualization

static
code

visualization

static
data

visualization

data
animation

code
animation

Friday 5 October 12

Software Visualization

‣ Program Visualization: “The visualization of the actual
program code or data structures in static or dynamic form”

‣ Algorithm Visualization: “The visualization of the higher-
level abstractions which describe software”

Algorithm
Visualization

static algorithm
visualization

algorithm
animation

Program
Visualization

static
code

visualization

static
data

visualization

data
animation

code
animation

Friday 5 October 12

Software Visualization in Context

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

‣ Information Retrieval

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

‣ How to visualize

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

‣ How to visualize

‣ Limited time

Friday 5 October 12

Software Visualization in Context

‣ There are many good-looking visualizations, but...

‣ When it comes to maintenance & evolution, there are
several issues:

‣ Scalability

‣ Information Retrieval

‣ What to visualize

‣ How to visualize

‣ Limited time

‣ Limited resources

Friday 5 October 12

Program Visualization

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems,
layout issues, HCI issues, GUI issues, lack of conventions
(colors, shapes, etc.)

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems,
layout issues, HCI issues, GUI issues, lack of conventions
(colors, shapes, etc.)

‣ Software Aspects

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems,
layout issues, HCI issues, GUI issues, lack of conventions
(colors, shapes, etc.)

‣ Software Aspects

‣ Granularity (complete systems, subsystems, modules, classes, etc.)

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems,
layout issues, HCI issues, GUI issues, lack of conventions
(colors, shapes, etc.)

‣ Software Aspects

‣ Granularity (complete systems, subsystems, modules, classes, etc.)

‣ When to apply (first contact, known/unknown parts, forward
engineering?)

Friday 5 October 12

Program Visualization

‣ “The visualization of the actual program code or data
structures in either static or dynamic form”

‣ Overall goal: generate views of a system to understand it

‣ Surprisingly complex problem domain/research area

‣ Visual Aspects: Efficient use of space, overplotting problems,
layout issues, HCI issues, GUI issues, lack of conventions
(colors, shapes, etc.)

‣ Software Aspects

‣ Granularity (complete systems, subsystems, modules, classes, etc.)

‣ When to apply (first contact, known/unknown parts, forward
engineering?)

‣ Methodology

Friday 5 October 12

Static Code Visualization

Friday 5 October 12

Static Code Visualization

‣ The visualization of information that can be extracted from
a system at “compile-time”

Friday 5 October 12

Static Code Visualization

‣ The visualization of information that can be extracted from
a system at “compile-time”

‣ Directly influenced by programming languages and their
paradigms

Friday 5 October 12

Static Code Visualization

‣ The visualization of information that can be extracted from
a system at “compile-time”

‣ Directly influenced by programming languages and their
paradigms

‣ Object-Oriented: classes, methods, attributes, inheritance, ...

Friday 5 October 12

Static Code Visualization

‣ The visualization of information that can be extracted from
a system at “compile-time”

‣ Directly influenced by programming languages and their
paradigms

‣ Object-Oriented: classes, methods, attributes, inheritance, ...

‣ Procedural: procedures, invocations, imports, ...

Friday 5 October 12

Static Code Visualization

‣ The visualization of information that can be extracted from
a system at “compile-time”

‣ Directly influenced by programming languages and their
paradigms

‣ Object-Oriented: classes, methods, attributes, inheritance, ...

‣ Procedural: procedures, invocations, imports, ...

‣ Functional: functions, function calls, ...

Friday 5 October 12

Examples

Friday 5 October 12

Treemaps

Friday 5 October 12

Treemaps

‣ Pros

‣ 100% screen usage

‣ Scalability

‣ Cons

‣ Interpretation

‣ Information overload

‣ Reflections

‣ Excellent for hierarchical data

Friday 5 October 12

Softwarenaut

Friday 5 October 12

Softwarenaut

‣ Pros

‣ Intuitive, metrics-based,
interactive visualization

‣ Cons

‣ Distance to source code

‣ Reflections

‣ The best vertical software
exploration tool ever

Friday 5 October 12

Euclidean Cones

‣ Pros

‣ More information than 2D

‣ Cons

‣ Lack of depth

‣ Navigation

Friday 5 October 12

Hyperbolic Trees

‣ Pros

‣ Good focus

‣ Dynamic

‣ Cons

‣ Copyrighted!

Friday 5 October 12

Rigi

‣ The grandfather of software
visualization tools

‣ Pros

‣ Scalability

‣ Domain-independent

‣ Cons

‣ Lack of code semantics

Friday 5 October 12

Distribution Maps

Friday 5 October 12

The Evolution Radar

Friday 5 October 12

Increasing Information Granularity: The Class
Blueprint

Initialize Interface Internal Accessor Attribute

invocation and access direction

Friday 5 October 12

Detailing Class Blueprints

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribute

internal access

external
access

Access

Invocation

Initialize Interface Internal Accessor Attribute

Friday 5 October 12

A Pattern Language based on Class Blueprints

Friday 5 October 12

number of
lines of code

number of attributes

number of methods

The Polymetric View Principle

Friday 5 October 12

Friday 5 October 12

System Complexity View

Friday 5 October 12

a simple and powerful concept

Friday 5 October 12

Friday 5 October 12

http://xray.inf.usi.ch/xray.php

Released:
Nov 2007

Friday 5 October 12

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

http://xray.inf.usi.ch/xray.php

Released:
Nov 2007 free

4000 +
downloads

Friday 5 October 12

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

Reflections on Static Visualization

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

‣ Scaling up is possible at the expense of semantics

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

‣ Scaling up is possible at the expense of semantics

‣ Orthogonally

Friday 5 October 12

Reflections on Static Visualization

‣ Pros

‣ Intuitive

‣ Aesthetically pleasing

‣ Cons

‣ Several approaches are orthogonal to each other

‣ No conventions

‣ Too easy to produce meaningless results

‣ Scaling up is possible at the expense of semantics

‣ Orthogonally

‣ Without programming knowledge it’s only colored boxes and
arrows..

Friday 5 October 12

Visualizing Software Systems
as Code Cities

Friday 5 October 12

The City Metaphor

Friday 5 October 12

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Friday 5 October 12

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Friday 5 October 12

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

Friday 5 October 12

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

package metric district property

nesting level color

class metric building property

number of methods (NOM) height

number of attributes (NOA) width, length

Friday 5 October 12

Welcome to ArgoUML City

ArgoUML City
pop. 2,522 classes, 143

packages

Friday 5 October 12

Software Topology

Azureus City
pop. 4’500+ classes

Friday 5 October 12

Software Topology

Azureus City
pop. 4’500+ classes

Friday 5 October 12

Software Topology

Azureus City
pop. 4’500+ classes

Friday 5 October 12

Crossing System Boundaries

Azureus ArgoUML

Friday 5 October 12

Scalability?

Cincom Smalltalk City
pop. 8,000+ classes

Friday 5 October 12

Mapping Metrics

identity

linear

boxplot-based

threshold-based

Friday 5 October 12

Mapping Metrics

identity

linear

boxplot-based

threshold-based

Friday 5 October 12

Mapping Metrics

identity

linear

boxplot-based

threshold-based

Friday 5 October 12

Mapping Metrics

identity

linear

boxplot-based

threshold-based

Friday 5 October 12

Mapping Metrics

identity

linear

boxplot-based

threshold-based

Friday 5 October 12

http://www.inf.unisi.ch/phd/wettel/codecity.html

Released:
Mar 2008

Friday 5 October 12

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

http://www.inf.unisi.ch/phd/wettel/codecity.html

Released:
Mar 2008 free

1300 +
downloads

Friday 5 October 12

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html

