Ontwerp van SoftwareSystemen

4 Design Patterns ?
<

S Talcle

Tuesday 9 October 12

Alexander’s patterns

» “Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in

such a way that you can use this solution a million
times over, without doing it the same way twice”

— Alexander uses this as part of the solution to capture
the “quality without a name”

'lm eC Wuyts Roel

stricted 2007 2

Tuesday 9 October 12

Illustrating Recurring Patterns...

»
PRI
) Al 3 B Ve e
AL e AN

Wuyts Roel
© imec restricted 2007

Imec

Tuesday 9 October 12

Alert!

» Do not overreact seeing all these patterns!

Do not apply too many patterns!

* Look at the trade-offs!

» Most patterns makes systems more complex!
— but address a certain need.

» As always: do good modeling.
— then see whether patterns can help,

— and where.

- Wuyts Roel
(MccC ctea 2007 | 4

Tuesday 9 October 12

Design Patterns

e A Design Pattern is a pattern that captures a solution
to a recurring design problem

— It is not a pattern for implementation problems

- It is not a ready-made solution that has to be applied

e cfr Rational Modeler, where patterns are available as
preconstructed class diagrams, even though in literature the
class diagrams are to illustrate the pattern!

'l mece “.' L e 5

Tuesday 9 October 12

Design Patterns

o Example:

- “We are implementing a drawing application. The
application allows the user to draw several kinds of
figures (circles, squares, lines, polymorphs, bezier
splines). It also allows to group these figures (and
ungroup them later). Groups can then be moved
around and are treated like any other figure.”

* Look at Composite Design Pattern

imec -

Tuesday 9 October 12

Patterns in Software Design

* A design pattern is a description of communicating
objects and classes that are customized to solve a
general design problem in a particular context.

lmec icea 2007 | 7

Tuesday 9 October 12

Pattern structure

* A design pattern is a kind of blueprint
» Consists of different parts
— All of these parts make up the pattern!

- When we talk about the pattern we therefore mean all
of these parts together

e not only the class diagram...

i(mec 2007

Tuesday 9 October 12

Why Patterns?

e Smart
— Elegant solutions that a novice would not think of
* Generic

— Independent on specific system type, language

e Allthough slightly biased towards C++
» Well-proven
— Successfully tested in several systems
o Simple

— Combine them for more complex solutions

i(mec 2007

Tuesday 9 October 12

GoF Design Pattern Book

» Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

— Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Gang-of-Four (GoF))

» Book is still very relevant today but:
- uses OMT notation (analogous to UML)

— illustrations are in C++

e Principles valid across OO languages!

IMeC - | 10

Tuesday 9 October 12

GoF Design Pattern Book

» 23 Design Patterns
» Classification
— according to purpose
— according to problems they solve (p. 24-25)
— according to degrees of freedom (table 1.2, p. 30)

Tlcle

Tuesday 9 October 12

Roel
007

Classification according to purpose

Creational

Class Factory Method
(static)

Object Abstract Factory
(dynamic) Builder
Prototype
Singleton

Tilcle

Tuesday 9 October 12

Structural
Class Adapter

Object Adapter
Bridge
Composite
Decorator
Facade

Proxy

Behavioral
Interpreter

Template Method

Chain of Responsibility

Command
Iterator
Mediator
Memento
Flyweight
Observer
State
Strategy
Visitor

Wuyts Roel
restricted 2007

12

Classification according to problems

— Dependence on specific classes:
e => Abstract Factory, Factory Method, Prototype

— Dependence op specific operations:
e => Chain of Responsibility, Command
— Dependence on hardware and/or software platforms:
e => Abstract Factory, Bridge
— Dependence on object representation or implementation:
e => Abstract Factory, Bridge, Memento, Proxy
— Dependence on algorithms:
e => Builder, Iterator, Strategy, Template Method, Visitor
— Tight Coupling:
e => Abstract Factory, Bridge, Chain of Responsibility, Command, Facade, Mediator, Observer
— Problems with enhancing functionality through subclassing:
e => Bridge, Chain of Responsibility, Composite, Decorator, Observer, Strategy
— Impossibility of easily changing classes:

e => Adapter, Decorator, Visitor

Tlcle e

Tuesday 9 October 12

Classification according to problems

o Different patterns are typically applicable

» EX.: dependance on algorithms

— Algorithms are source of evolution (extend, replace,
optimize, ...)

— Classes depending on algorithms are therefore
unstable

— So algorithms amenable to change have to be
encapsulated

» Design patterns that can help do this:
— Builder, Iterator, Strategy, Template Method, Visitor

IMmecC icedz007 | 14

Tuesday 9 October 12

Classification according to degrees of freedo

Purpose Design Pattern Aspect(s) That Can Vary

Abstract Factory (87) families of product objects

Builder (97) how a composite object gets created

Creational Factory Method (107) subclass of object that is instantiated

Prototype (117) class of object that is instantiated
Singleton (127) the sole instance of a class
Adapter (139) interface to an object
Bridge (151) implementation of an object
Composite (163) structure and composition of an object
Structural Decorator (175) responsibilities of an object without subclassing

Facade (185) interface to a subsystem
Flyweight (195) storage costs of objects
Proxy (207) how an object is accessed; its location

itmec R

Tuesday 9 October 12

Purpose

Behavioral

Tlcle

Tuesday 9 October 12

Design Pattern

Chain of
Responsibility

(223)
Command (233)

Interpreter (243)

lterator (257)

Mediator (273)

Memento (283)

Observer (293)

State (305)

Strateqy (315)

Template
Method (325)

Visitor (331)

Aspect(s) That Can Vary

object that can fulfill a request

when and how a request is fulfilled
grammar and interpretation of a language

how an aggregate's elements are accessed,
traversed

how and which objects interact with each other

what private information is stored outside an object,
and when

number of objects that depend on another object;
how the dependent objects stay up to date

states of an object

an algorithm
steps of an algorithm

operations that can be applied to object(s) without
changing their class(es)

Wuyts Roel

© imec restricted 2007

Design Pattern Relationships

Tuesday 9 October 12

Example Pattern: Visitor

Visitor

Tuesday 9 October 12

Visitor

» Category
— Behavioral

o Intent

— Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

e Motivation

Node

TypeCheck()
GenerateCode()
ProttyPanit()

VariableRefNode AssignmentNode
TypeCheck() TypaeCheck()

GenerateCodel() GenerateCodel()
PretyPrint() PrettyPrint()

Tlcle e

Tuesday 9 October 12

Motivation (cont)

NodeVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VanableRefNode)

A

CodeGeneratingVisitor

VisitAssignment{AssignmentNode)
VisitVariableRef(VanableRefNede)

TypeCheckingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRetNode)

Program O—DJ Node

Accepl{Node Visitor)

A

AssignmentNode VariableRefNode

Accept{NodeVisitor v) Q
i
|

Accept{NodeVisitor v) C.>
i

v—>VisitVariableRef(this)§

v->VisitAssignmenI(this)§|

R 6e|
007

Tlcle

Tuesday 9 October 12

Applicability

* An object structure contains many classes of objects
with differing interfaces and you want to perform
operations on these objects that depend on their
concrete classes.

» Many distinct and unrelated operations need to be
performed on objects in an object structure an you
want to avoid “polluting” their classes with these
operations.

» The classes defining the object structure rarely
change but you often want to define new operations
over the structure.

- . Wuyts Roel 2 |
lm eC mec restricted 2007

Tuesday 9 October 12

Structure

o Structure

Cllanli w| Visitor
VisitConcreteblementA(ConcreteElementA)
VisitConcretetlemaentB(Concrateklermsent8)
[|
ConcreteVisitor1 ConcreteVisitor2
VisitConcreteElementA(ConcreteElemeaentA) VisitConcreteElementA(CaoncreteElementA)
VisitConcreteElementB(ConcreteElementB) VisitConcreteElementB({ConcreteElementB)
| ObjectStructure e Element
Acceptf\Visitor)
[|
ConcreteElementA ConcreteElementB
Accept(Visitor v) = Accept(Visitor v) =
OperationAl() : OperationB() :
N N
- -
v-:»VisitConcretoEIomemA(this)H V- :-VcsitConcroteElomentB(this)q

i(mec 2507

Tuesday 9 October 12

Sequence

anObjectStructure

Accept(aVisitor) -'J_

.

Accept(aVisitor)

aConcreteElementA

aConcreteElementB

VisitConcreteElementA{aConcreteElementA)

aConcreteVisitor

L.

OperationAl}

Tlcle

Tuesday 9 October 12

w VisitConcreteElementB(aConcreteElementB)

OperationB(}

T

5 Roel
2007

Participants

e Visitor

— Declares a Visit operation for each class of ConcreteElement in the object
structure.

— The operations name and signature identifies the class that sends the Visit
request.

o ConcreteVisitor
- Implements each operation declared by Visitor.

— Each operation implements a fragment of the algorithm for the corresponding
class of object in the object structure.

— Provides the context for the algorithm and stores its state (often accumulating
results during traversal).

e Element

— Defines an accept operation that takes a Visitor as an argument.

(pylcle s007 | 24

Tuesday 9 October 12

Participants (cont)

e ConcreteElement

— Implements an accept operation that takes a visitor as
an argument.

» ObjectStructure
— Can enumerate its elements.

— May provide a high-level interface to allow the visitor
to visit its elements.

— May either be a Composite or a collection such as a list
or set.

i(mec 2007

Tuesday 9 October 12

Collaborations

* A client that uses the visitor pattern must create a
ConcreteVisitor object and then traverse the object
structure visiting each element with the Visitor.

* When an element is visited, it calls the Visitor
operation that corresponds to its class. The element
supplies itself as an argument to this operation.

- . Wuyts Roel
lmeC estricted 2007 26

Tuesday 9 October 12

Consequences

» Makes adding new operations easy.

— a new operation is defined by adding a new visitor (in
contrast, when you spread functionality over many
classes each class must be changed to define the new
operation).

» Gathers related operations and separates unrelated
ones.

— related behavior is localised in the visitor and not
spread over the classes defining the object structure.

- Vl ts Roel
(MmccC ted 2007

27

Tuesday 9 October 12

Consequences (cont)

» Adding new ConcreteElement classes is hard.

— each new ConcreteElement gives rise to a new abstract
operation in Visitor and a corresponding
implementation in each ConcreteVisitor.

» Allows visiting across class hierarchies.

— an iterator can also visit the elements of an object
structure as it traverses them and calls operations on
them but all elements of the object structure then
need to have a common parent. Visitor does not have
this restriction.

yts Roel 28

Tlcle i

Tuesday 9 October 12

Consequences (cont)

» Accumulating state

— Visitor can accumulate state as it proceeds with the
traversal. Without a visitor this state must be passed
as an extra parameter of handled in global variables.

» Breaking encapsulation

— Visitor’s approach assumes that the ConcreteElement
interface is powerful enough to allow the visitors to do
their job. As a result the pattern ofthen forces to
provide public operations that access an element’s
internal state which may compromise its
encapsulation.

'l mece N | 29

Tuesday 9 October 12

Example Code

abstract class Equipment {

String name;

public String name () {

return name;

}

abstract int power();
abstract int netPrice();
abstract void add (Equipment e);

abstract void remove (Equipment e);

abstract void accept (EquipmentVisitor v);

protected Equipment (String n) {
name = n;

}

Tlcle

Tuesday 9 October 12

'6d
007

30

Example Code

abstract class EquipmentVisitor {
public abstract void visitFloppydisk (Floppydisk f);
public abstract void visitCard(Card c);
public abstract void visitChassis(Chassis c);
public abstract void visitBus (Bus b);

public abstract void visitCabinet (Cabinet c);

imec e

Tuesday 9 October 12

Example Code

public class Floppydisk extends Equipment {
public Floppydisk (String name) {

super (name) ;

}

public int power () {
return 60;

}

public int netPrice () {
return 50;

}

public void accept (EquipmentVisitor wv) {
v.visitFloppydisk (this);
}

public void add (Equipment e) {}

public void remove (Equipment e) {}

Tlcle

Tuesday 9 October 12

'6d
007

32

Example Code

public class Cabinet extends CompositeEquipment {

public Cabinet (String name) {
super (name) ;

}

public int power () {
return 0;

}

public int netPrice () {
return 60;

}

public void accept (EquipmentVisitor v) {

Iterator i1 = createlterator();
while (i.hasNext ()) {
Equipment e = (Egquipment) i.next();

e.accept (v) ;

}

v.visitCabinet (this) ;

}

Tlcle

Tuesday 9 October 12

Roel
007

Example Code

public class Main {
public static void main(String[] args) {
Cabinet cabinet = new Cabinet ("PC Cabinet");
Chassis chassis = new Chassis ("PC Chassis");
cabinet.add(chassis);
Bus bus = new Bus ("MCA bus");
bus.add (new Card ("NetworkCard"));
chassis.add (bus) ;
chassis.add (new Floppydisk ("3.5 Floppy")):;
PricingVisitor p = new PricingVisitor();
cabinet.accept (p);
InventoryVisitor 1 = new InventoryVisitor();

cabinet.accept (i),

System.out.println ("The computer contains: ");
i.getInventory (),

System.out.println ("The price is " + p.getTotal());
}

Tlcle 55

Tuesday 9 October 12

Example Code

The computer contains:

NetworkCard

MCA Dbus

3.5 Floppy

PC Chassis

PC Cabinet

The price is 350

Tuesday 9 October 12

Known Uses

* In the Smalltalk-80 compiler.

» In 3D-graphics: when three-dimensional scenes are
represented as a hierarchy of nodes, the Visitor

pattern can be used to perform different actions on
those nodes.

ImecC iciea 2007 | 36

Tuesday 9 October 12

Visitor Pattern

» S0, we've covered the visitor pattern as found in the
book

— Are we done?

Tlcle e

37

Tuesday 9 October 12

visit(OperationA a)
visit(OperationB b)

VS
visitOperationA(OperationA a)
visitOperationB(OperationB b)

Tlcle

Tuesday 9 October 12

'ts Roel

12007

Short Feature...

&mec m Roel Wuyts
Nl

39

Tuesday 9 October 12

What is the result of the following expression *?

class A {
void m(A a) { println("1"); }

}

class B extends A {
void m(B b) { printIln("&"); }
void m(A a) { printin("3"); }

}

B b =new B();
A a="b;
a.m(b); — ¢

&‘mG‘C m Roel Wuyts

40

Tuesday 9 October 12

Main Feature...

&mec m Roel Wuyts
R

MY MNEW DESIGN LWIILL
MEET ALL OF QUR
CUSTOMERS CURRENT
AND FUTURE NEEDS.

41

Tuesday 9 October 12

Visiting all Elements in the CDT Parsetree

public abstract class ASTVisitor {

public int
public int
public int
public int
public int
public int
public int
public int
public int
public int
public int

public int

Tilcle
(i

visit(IASTTranslationUnit tu)
visit(IASTName name)
visit(IASTDeclaration declaration)
visit(IASTInitializer initializer)
visit(IASTParameterDeclaration parameterDeclaration)
visit(IASTDeclarator declarator)
visit(IASTDeclSpecifier declSpec)
visit(IASTExpression expression)
visit(IASTStatement statement)
visit(IASTTypeld typeld)
visit(IASTEnumerator enumerator)

visit(IASTProblem problem)

Roel Wuyts

return

return

return

return

return

return

return

return

return

return

return

return

PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;
PROCESS_CONTINUE;

PROCESS_CONTINUE;

42

Tuesday 9 October 12

To Arms!

43

Roel Wuyts

Tuesday 9 October 12

Advanced Visitor Discussions

e When looking more closely at the visitor and its
implementation, we can discuss a number of things
in more detail:

— Who controls the traversal?
— What is the granularity of the visit methods?

— Implementation tricks

IMecC | 44

Tuesday 9 October 12

Controlling the traversal

» Somewhere in the visitor, items are traversed.

» Different places where the traversal can be
implemented:

- in the visitor

— on the items hierarchy

Tlcle

Tuesday 9 October 12

'ts Roel

12007

Traversal on the Visitor

Visitor
Expression visitNumber(Number)
— visitBinaryOp(BinaryOp)
accept(Visitor) visitPlus(Plus)
visitTimes(Times)
Number BinaryOp
accept(Visitor) left: Expression
S ————————— right: Expression '

accept(Visitor) Printer Evaluator
visitNumber(Number) visitNumber(Number)
visitBinaryOp(BinaryOp) visitBinaryOp(BinaryOp)
visitPlus(Plus) © visitPlus(Plus) o

Plus Times visitTimes(Times) visitTimes(Timés)
— e ——————
accept(Visitor) 0 accept(Visitor) / /
—_— /

| / //

\ / /

| /

| ..

" tPlus(Plus p) { M
visitPlus(Plus p) { m VISI N
accept(Visitor v) { p.left().accept(this); double | = p.Igft().accept(thls?, .
v.visitPlus(this); this.printPlus); double r = p.right().accept(this);
} p.right().accept(this); }return L+

'lmec Wuyts Roel 46

stricted 2007

Tuesday 9 October 12

Traversel on the items

Visitor
visitNumber(Number)
visitBinaryOp(BinaryOp)

accept(Visitor visitPlus(Plus)
Number BinaryOp

acceEtSVisitorz left: Expression

right: Expression

accent(Visitor Printer Evaluator
% visitNumber(Number) visitNumber(Number)o
visitBinaryOp(BinaryOp) wsﬂBmaryOp(BmaryOb)

visitPlus(Plus) wsﬂPIus(PI/s)—O \

Plus Times siTmes(Times) | Lyisimesfimes
acceEtSVisitorz o] acceEtSVisitorz _ - \
- \
\

Expression

g
—~
g
/

|

|

|
|

\
B« visitNumber(Number n) { &
M visitPlus(Plus p) {

accept(Visitor v) { float r = result.pop() result.push(n);

left.visit(v); float | = result.pop();

right.visit(v); result.push(l + r); }

v.visitPlus(this); }
}

: Wuyts Roel
imec | -

Tuesday 9 October 12

Granularity of Visit Methods

» Sometimes you can pass context information with
the visit methods

» So visitors have more information for implementing
their operations

yts Roel 48

Tlcle i

Tuesday 9 October 12

Granularity of Visit Methods

» Regular case: nothing special is going on

}

ProgramNode

nodeDo(ProgramNodeEnumerator)

VariableNode

name: String

nodeDo(ProgramNodeEnumerator)

LN

return enumerator.doVariable(
this,
name)

~
~
~

IMeC

Tuesday 9 October 12

SequenceNode

temporaries: ProgramNode
statements: ProgramNode

godeDo(ProgramNodeEnumerator)

~
~
~ .
return enumerator.doSequence(
this,
temporaries,
statements)

AN

doNode(ProgramNode aNode) {
return aNode.nodeDo(this);

AN

doNodes(nodes: ...) { m
) {

for(node in nodes
doNode(node)

}

}

/
/
N ProgramNodeEnumérator

\<'>doNode(ProgramNode) /
doNodes(List<ProgramNode>)
doSequence(SequenceNode,
temps: List<ProgramNode>,
statements: List<ProgramNode>)

doVariable(VariableNode, name: String) P
—_— 55—

- /
P /
P /
P - /
P - /
- //
/
doVariable(...) { doSequence(...) { &
return varNode; doNodes(temps);
} doNodes(statements);

return seqNode;

}

Wuyts Roel
c restricted 2007

49

Refined granularity

e More semantics in the visitor

- no TemporaryVariableNode, but specific visit method

(cfr. Pure Fabrication)

ProgramNode
nodeDo(ProgramNodeEnumerator)

.

VariableNode SequenceNode

name: String temporaries: ProgramNode

nodeDo(ProgramNodeEnumerator) statements: ProgramNode

doTemporaryVariable(...) {
return doVariable(aNode, name);
}

Talcle

Tuesday 9 October 12

nodeDo(ProgramNodeEnumerator)
e ————————

ProgramNodeEnumerator
doNode(ProgramNode)
doNodes(List<ProgramNode>)
doSequence(SequenceNode,

temps: List<ProgramNode>,
statements: List<ProgramNode>lo
doVariable(VariableNode, name: String) ~

doTemporaryVariable(VariableNode, namg:/String)

doSequence(...){ m

for(temp in temps) {
doTemporaryVariable(temp, temp.name())

}

doNodes(statements);

return segNode;

}

Wuyts Roel
estricted 2007 50

Implementation tricks

* You can implement it as we have shown before.
» But notice the general structure of the methods!
» This can be taken as advantage:

— code can be generated for a visitor.

- the method can be performed/invoked

» But take care:
— only works when there is a full correspondence.

— can make the code hard to understand.

IMeC icted 2007 | 51

Tuesday 9 October 12

Using Reflection (invoke)

» Uses reflection to implement accept() only once

- instead of hardcoding the bodies of accept methods
over and over again

accept(Visitor v) { &

Class cls = this.getClass();

Class[] param = new Class[1];

param[0] = cls;

Method method = cls.getDeclaredMethod("visit"+cls.getName(), param);
method.invoke(v, this)

}
Visitor
Expressio d’ visitNumber(Number)
— 1 visitBinaryOp(BinaryOp)
accept(Visitor) O visitPlus(Plus)
visitTimes(Times)

‘ Number b BinaryOp

left: Expression
right: Expression

‘ Plus b ‘ Times b
: ~ Wuyts Roel
imec a0y | 52

Tuesday 9 October 12

Strategy

Tuesday 9 October 12

Het Strategy (Policy) Patroon (315)

strateqy

Context s Strategy

Contextinterface() Algorithminterfacef)

A

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Algorthminterfacel) Algorithminterface() Algonthminterfacel)

» Doel: onafhankelijkheid van algoritmen door inkapseling
— => variatie van algoritme mogelijk
» Implementatie-overwegingen:

— koppeling Context — Strategy:
e data als parameters naar Strategy doorgeven

e Context als parameter naar of als verwijzing vanuit Strategy

lmec icea 2007 | 54

Tuesday 9 October 12

Het Strategy Patroon: gevolgen

* Familie van verwante algoritmen mogelijk. Er is wel een factorizatie van
gezamenlijke functionaliteit nodig in de abstracte klasse

» Een alternatief voor subclassing. Subclassing op algoritme-niveau in plaats
van op context-niveau

* Vermijdt conditionele statements, switch zit nu in verbonden strategy object

» Verschillende implementaties vaan eenzelfde gedrag mogelijk
(bv. tijd/geheugen afweging)

» Oproeper moet wel op de hoogte zijn van verschillende mogelijke
strategieen, en moet er misschien zelfs een instellen

o Communicatie-overhead tussen Context en Strategie
=> alle mogelijke bruikbare info moet worden doorgegeven maar is
misschien overbodig

» Toenemend aantal objecten in je systeem => ev. Strategie als stateless
object ontwerpen die dan gedeeld kan worden door de verschillende context-
objecten (zie Flyweight)

1 Wuyts Roel
l m e C c restricted 2007 55

Tuesday 9 October 12

Decorator

Tuesday 9 October 12

3. Verfraaien van UI Lexi

» toevoegen van kader, scroll bars, ...

— gemakkelijk dynamisch te verwijderen en te combineren

— transparantie bij gebruik UI objecten
» oplossing door overerving:
— combinatorische explosie
— statische keuze
» oplossing door objectcompositie: T
— dynamische keuze

— Glyph bevat Border of Border bevat Glyph ?

Tlcle

Tuesday 9 October 12

Sove appicaione souk] tered
e s chpen v rocel ey
papect of Dar Lresoominy ty!

® Sade desd addrvach wod be
POty sipern e

ot arrpe, swal doourwert so-
Vs MO S e Ted wad s
101G ared ek cies e sovw
axtent Howse P raaratl

o s el sl 0 T

Ml be T prriy wy W

] e

.

o [0

)
1yts Roel
. 57

ed 2007

Verfraaien van UI Lexi

» Ontwerp van Border klasse:

— hebben uitzicht, dus subklasse
van Glyph

— Border kan als gewone Glyph
behandeld worden

e concept van Transparante
Verpakking

— enkelvoudige component

— compatibele interfaces

Tlcle

Tuesday 9 October 12

- Glyph

Oraw{Windo

w)

A

—OI MonoGlyph

component

Draw(Window)

A

Border

Scroller

Draw{Window)

Draw{Window)

DrawBorder(Window)

-._ ts Roel
ed 2007

| 58

— Dynamische configuratie

— Uitvoering door
berichtdelegatie:

void MonoGlyph: :Draw (Window* w)
__component->Draw (w) ;

}

void Border::Draw (Window* w)
MonoGlyph: :Draw (w) ;
DrawBorder (w) ;

}

Tlcle

Tuesday 9 October 12

{

&

scroller

— Glyph

Oraw{Window}

:

component

—<2 MonoGlyph

Draw(Window)

A

Border

Draw{Window)
DrawBorder(Window)

Scroller

Draw{Window)

s Roel
2007

Het Decorator (Wrapper) Patroon (175)

o Doel:

- dynamisch en transparant verantwoordelijkheden aan
individuele objecten toevoegen

— alternatief voor extensie door overerving

component»()pemtion()ul

Decorator::Operationd);
AddedBehavior().

Component L.
Operation()
I I component
ConcreteComponent Decorator
Operation() Operalion) O-f----=--====-=—==-—-———+
l |
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation{) O-==-==q======1
AddedBehavior()
addedState
IMCC

Tuesday 9 October 12

Het Decorator Patroon: gevolgen

» Kenmerken:
— biedt meer flexibiliteit dan (statische) overerving

- “"pay as you go”: kleine functionele toevoegingen ipv
alles-in-een

— gedecoreerd object heeft andere identiteit
— Nadeel: overvioed aan kleine objecten

» Implementatie-overwegingen:
- houdt Component klasse lichtgewicht

— abstracte Decorator alleen nodig bij meerdere
verantwoordelijkheden

i(mec e

6l

Tuesday 9 October 12

Het Decorator Patroon

» Implementatie-overwegingen:

— Decorator of Strategy?
e Beiden passen gedrag object aan
e Strategy moet gekend zijn door Component, maar kan eigen interface hebben

e Strategy te verkiezen bij zwaargewicht Component klasse

aComponent
aStrate
suategnes i aStrategy W
nex!
next J

(~\ strateqy-extended functionality —l
aDecorator
aDecorator -
[_component_o
T
|— decoralor-extended functionality —l

IMecC | 62

Tuesday 9 October 12

Command

Tuesday 9 October 12

6. Gebruikersoperaties Lexi

* Doelstellingen:

— scheiding operatie van user interface
e één operatie kan op verschillende manieren aangegeven worden

e anders hoge koppeling tussen UI klassen en applicatie

— undo en redo van operaties ondersteunen

» Oplossing: definitie van Command klasse

Glyph
Menultem locommand .! Command

Clicked(} Q Execute()
|
|

| command->Exascute(); 5 o

___>_

s Roel
2007

Tlcle

Tuesday 9 October 12

Gebruikersoperaties Lexi

e Elke concrete Command klasse bevat informatie voor
en implementatie van operatie

Command

Execute(!

A

PasteCommand FontCommand SaveCommand lq save QuitCommand
Execute() Q Execute() ¢ Executel) ¢ Execule() §
buffer i newFont i E E
| |
| | pop up a dialogﬁ it (document is modified) { T
- box that Iets{hthe ! save-=Executel)
user name e
paste bufter make selected document, and quit the application
inte document text appear in then save the
newFont document under
that name
- Wuyts Roel
lmec e 2007 | 65

Tuesday 9 October 12

Het Command Patroon (233)

e Doel:

— van operaties eerste-orde objecten maken om deze te
kunnen manipuleren (parameterizatie, queueing,

logging, undoing, ..

e Structuur:

Client

Tuesday 9 October 12

)
Invoker = .l Command
Execute(}
.I Receiver A
Action]) rl iiad ConcreteCommand
Execute() O--------
™ state

. recelver—>Actlon(ﬁ

Het Command Patroon: gevolgen

— Ontkoppeling oproeper en uitvoerder

— Commando’s als first-class entiteiten die kunnen
gemanipuleerd en uitgebreid worden

— Commando’s kunnen worden gegroepeerd in
samengestelde commando’s

- Eenvoudig om nieuwe commando’s te kunnen
toevoegen
=> geen uitbreiding van basisklasse nodig

Tlcle

Tuesday 9 October 12

5 Roel
2007

67

Patterns Catalogue

- Factory Method

— Composite

— Abstract Factory

— Singleton

— Proxy

— Adapter

— Observer

— Chain of Responsibility
- FlyWeight

- Facade

Tlcle

Tuesday 9 October 12

R 6e|
007

68

Discussion of Design Patterns

Factory Method

Tlcle

Tuesday 9 October 12

RO
007

69

Factory Method

o Category
— Creational
e Intent

— Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

e Motivation

- When frameworks or toolkits use abstract classes to
define and maintain relationships between objects and
are responsible for creating the objects as well.

Tlcle S | 70

Tuesday 9 October 12

Motivation (cont)

Document® doc = CreateDocument();
docs.Add(doc);
doc->0pen();

|

Document I.q_do.f::;l Application

Openy) CreateDocumenl(}
Close() NewDocument{) o~
Save() OpenDaocument()
Revert()

A

A

MyDocument I-- -------- MyApplication

Tlcle

Tuesday 9 October 12

CreateDocument() O

return new MyDocument H

Roel
007

Applicability

» Use the Factory Method pattern when

— a class can't anticipate the class of objects it must
Create.

— a class wants its subclasses to specify the objects it
creates.

— classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate.

Tlcle S5 | 72

Tuesday 9 October 12

Structure

Product

FA)

ConcreteProduct |‘

Tlcle

Tuesday 9 October 12

Creator

FactoryMethod()

AnOperation() -

product = FactoryMethod() 1

ConcreleCreator

FactoryMethod() ©-

return new ConcreteProductH

R 6e|
007

7A]

Participants

* Product

— Defines the interface of objects the factory method creates.

» ConcreteProduct

- Implements the Product interface.

» Creator

— Declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory
method that returns a default ConcreteProduct object.

— They call the factory method to create a Product object.

» ConcreteCreator

— Overrides the factory method to return an instance of a
ConcreteProduct.

'ts Roel

i(mec 200

Tuesday 9 October 12

Collaboration

» Creator relies on its subclasses to define the factory
method so that it returns an instance of the
appropriate ConcreteProduct.

IMEC | 7S

Tuesday 9 October 12

Consequences

* Eliminates the need to bind application specific classes
into your code.

» Clients might have to subclass the Creator class just to
create a particular ConcreteProduct object.

e Provides hooks for subclasses

- the factory method gives subclasses a hook for providing
an extended version of an object.

» Connects parallel class hierarchies

— a client can use factory methods to create a parallel class
hierarchy (parallel class hierarchies appear when objects
delegate part of their responsibilities to another class).

Wuyts Roel | 76

-
lmeC trjcted 2007

Tuesday 9 October 12

Example Code

public interface Creator {

public Fruit createFruit (String type);

public class GoodFruitCreator implements Creator({
public Fruit createFruit (String type) {
if (type == "apple") {

return new Apple();

else return new Orange () ;

Tlcle

Tuesday 9 October 12

R 6e|
007

77

Example Code

public class RottenFruitCreator implements Creator/{

public Fruit createFruit (String type) {

if (type == "apple") {

return new RottenApple();

else return new RottenOrange();

Tuesday 9 October 12

Example Code

abstract class Fruit {
String type="";
public String getType () {
return type;
}

}

public class Apple extends Fruit {
Apple () {
type = "apple";
}

}

public class Orange extends Fruit {
Orange () {
type = "orange";

}

Tlcle

Tuesday 9 October 12

R 6e|
007

79

Example Code

public class RottenApple extends Fruit ({
RottenApple () {

type = "rottenapple";

public class RottenOrange extends Fruit ({
RottenOrange () {

type = "rottenorange";

Tuesday 9 October 12

Example Code

public class FruitShop {
Creator c;
public FruitShop (Creator creator) {

= creator;

public void getFruit (String type) {
Fruit f = c.createFruit(type);

System.out.println("You get a(n) " + f.getTypel()):

Tuesday 9 October 12

Example Code

public class Main {
public static void main (String[] args) {
FruitShop goodShop = new FruitShop (new GoodFruitCreator());
FruitShop badShop = new FruitShop (new RottenFruitCreator()):;
goodShop.getFruit ("apple");
goodShop.getFruit ("orange") ;
badShop.getFruit ("apple");
badShop.getFruit ("orange") ;
}

Console:
You get a(n) apple
You get a(n) orange
You get a(n) rottenapple

You get a(n) rottenorange

Tlcle e

Tuesday 9 October 12

Known Uses

e Toolkits and frameworks

e Class View in Smalltalk-80

— contains a defaultController method which is a Factory
Method.

e Class Behavior in Smalltalk-80

— contains a parserClass method which also is a factory
method.

» Could also be used to generated an appropriate type
of proxy when an object requests a reference to an
object. Factory Method makes it easy to replace the
default proxy with another one.

: . Wuyts Roel
lmec estricted 2007 | 83

Tuesday 9 October 12

Questions

» How does this pattern promote loosely coupled code?

» Does the following code fragment implement the

factory method pattern?

public class XMLReaderFactory {
// This method returns an instance of a class
// that implements the XMLReader interface.
// The specific class it creates and returns is
// based on a system property.

public static XMLReader createXMLReader () ;

}

public interface XMLReader {

public void setContentHandler (ContentHandler handler):

public void parse (InputStream is);

Talcle

Tuesday 9 October 12

.uyts Roel
icted 2007

84

Discussion of Design Patterns

Composite

Tuesday 9 October 12

Composite

o Category
— Structural
e Intent

— Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly

aPicture

e Motivation

aPicture aRectangle

[aText [aLine J | aRectangle |

lmec s | 86

Tuesday 9 October 12

Motivation (cont)

Graphic %

Draw(}

Add{Graphic)
Remove(Graphic)
GetChiid{int)

A

| | | | graphics
Line Rectangle Text Picture K
Draw() Draw() Draw() Draw() O —=====f========-=--- f°'a'bgrai"w)raphics ﬁ
Add(Graphic g) ©-[=----1 9
Remove(Graphic) !
GetChild(int) === add g to list of graphics ﬁ
- Roel
(MmeccC 007

Tuesday 9 October 12

Applicability

» Use the Composite Pattern when:

— you want to represent part-whole hierarchies of
objects.

— you want clients to be able to ignore the difference
between compositions of objects and individual
objects. Clients will treat all objects in the composite
structure uniformly.

i(mec 2507

Tuesday 9 October 12

Structure

Chient

4.| Component

-

aComposite

aComposite

[ateat | [ateat |

aleaf |

Tlcle

Tuesday 9 October 12

Operation(}

GatChild{int)

AddgiComponent)
Remove{Component)

A

Leaf

Operation()

Composite

children

Operation{) G------
Add{Componeant)
Remove(Component)
GetChild{int)

forall g in children
g.Operation();

5 Roel
2007

89

Participants

» Component
— Declares the interface for objects in the composition.

- Implements default behaviour for the interface
common to all classes, as appropriate.

— Declares an interface for accessing and managing its
child components.

» Leaf

— Represents leaf objects in the composition. A leaf has
no children.

— Defines behaviour for primitive objects in the
composition.

i(mec e

Tuesday 9 October 12

Participants (cont)

» Composite
— defines behaviour for components having children.
— stores child components.

— implements child-related operations in the Component
interface.

» Client

— manipulates objects in the composition through the
Component interface.

imec -

Tuesday 9 October 12

Collaborations

» Clients use the Component class interface to interact
with objects in the composite structure. Leaves
handle the requests directly. Composites forward
requests to its child components.

IMeC icted 2007 | 92

Tuesday 9 October 12

Consequences

» Defines class hierarchies consisting of primitive and
composite objects.

» Makes the client simple. Composite and primitive
objects are treated uniformly (no cases).

» Eases the creation of new kinds of components.

» Can make your design overly general.

Wuyts Roel 9 3

-
lmeC trjcted 2007

Tuesday 9 October 12

Example Code

abstract class Equipment {
String name;
public String name () {
return name;
}
abstract int power();
abstract int netPrice();
abstract void add (Equipment e);
abstract void remove (Equipment e);
public Iterator createlterator () {
return new NullIterator();
}
protected Equipment (String n) {
name = n;

}

Tlcle

Tuesday 9 October 12

'6d
007

94

Example Code

abstract class CompositeEquipment extends Equipment {

ArrayList 1;

public CompositeEquipment (String name) {

super (name) ;

1 = new ArrayList();

}

abstract int power();

public int netPrice () {

Iterator i = createlterator();

int total = 0;

while (i.hasNext ()) {
Equipment e = (Equipment)i.next();
total += e.netPrice();

}

return total;

}
public void add (Equipment e) {

1l.add(e);

}
/...

Tlcle

Tuesday 9 October 12

Roel
007

95

Example Code

public void remove (Equipment e) {
l.remove (e) ;

}

public Iterator createlterator () {

return l.listIterator();

}

Tuesday 9 October 12

Example Code

public class NullIterator implements Iterator ({
public boolean hasNext () {

return false;

public Object next () throws NoSuchElementException/{

throw new NoSuchElementException();

public void remove () throws IllegalStateException/{

throw new IllegalStateException() ;

Tlcle

Tuesday 9 October 12

'6d
007

97

Example Code

public class Cabinet extends CompositeEquipment {
public Cabinet (String name) {

super (name) ;

public int power () {

return 0;

public int netPrice () {
int total = 60 + super.netPrice();

return total;

Tlcle

Tuesday 9 October 12

'6d
007

98

Example Code

public class Chassis extends CompositeEquipment {
public Chassis (String name) {

super (name) ;

public int power () {

return 0;

public int netPrice () {
int total = 40 + super.netPrice();

return total;

Tlcle

Tuesday 9 October 12

'6d
007

929

Example Code

public class Bus extends CompositeEquipment {
public Bus (String name) {

super (name) ;

public int power () {

return 40;
public int netPrice () {

int total = 100 + super.netPrice();

return total;

imec 55 | 100

Tuesday 9 October 12

Example Code

public class Card extends Equipment {
public Card(String name) {

super (name) ;

public int power () {

return 60;

public int netPrice () {

return 100;

public void add(Equipment e) {}

public void remove (Equipment e) {}

Tlcle

Tuesday 9 October 12

'6d
007

101

Example Code

public class Floppydisk extends Equipment {
public Floppydisk (String name) {

super (name) ;

public int power () {

return 60;

public int netPrice () {

return 50;

public void add(Equipment e) {}

public void remove (Equipment e) {}

imec 5 | 10

Tuesday 9 October 12

Example Code

public class Main {
public static void main (String[] args) {
Cabinet cabinet = new Cabinet ("PC Cabinet");
Chassis chassis = new Chassis ("PC Chassis");
cabinet.add (chassis);
Bus bus = new Bus ("MCA bus");
bus.add (new Card ("NetworkCard"));
chassis.add (bus) ;
chassis.add (new Floppydisk("3.5 Floppy")):;

System.out.println ("The price is " + cabinet.netPrice());

}

Console:

The price is 350

Tlcle E | 103

Tuesday 9 October 12

Known Uses

 Can be found in almost all object oriented systems.

» The original View class in Smalltalk Model / View /
Controller was a composite.

IMecC B | 104

Tuesday 9 October 12

Questions

» How does the Composite pattern help to consolidate
system-wide conditional logic?

 Would you use the composite pattern if you did not
have a part-whole hierarchy? In other words, if only
a few objects have children and almost everything
else in your collection is a leaf (a leaf that has no
children), would you still use the composite pattern
to model these objects?

Wuyts Roel

lmec) restricted 2007 IOS

Tuesday 9 October 12

Discussion of Design Patterns

Singleton

Tuesday 9 October 12

Singleton

» Category
— Creational
o Intent

— Ensure a class only has one instance, and provide a global point of
access to it.

e Motivation
— There should be only one instance.
- For example, many printers, but only one printspooler.

— Using a global variable containing the single instance?

e Cannot ensure no other instances are created.

— Let the class control single instance.

Tlcle | 107

Tuesday 9 October 12

Applicability and Structure

» Use Singleton pattern when

— There must be exactly one instance of al class, and it
must be accessible to clients from a well-known access
point.

— When the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Singlet
o Structure gzt
static Instance(}) O---q---------- retum uniguelnsiance ﬁ
SingletenOperation()
GetSingletonData()
static uniquelinstance
singletonData
- s Roel
\MmeccC ey | 108

Tuesday 9 October 12

Participants and Collaborations

e Participants

— Singleton

e Defines an instance operation that lets clients access its unique
instance. Instance is a class operation that will either return or
create and return the sole instance.

e May be responsible for creating its own unique instance.
» Collaborations

— Clients access a Singleton solely through Singleton’s
iInstance operation.

(pylcle so07 | 109

Tuesday 9 October 12

Consequences

e Controlled access to sole instance.

— Because the Singleton class encapsulates its sole
instance, it can have strict control over how and when
clients access it.

» Reduced name space.

— The Singleton pattern is an improvement over global
variables that store sole instances.

i(mec S2007 | 110

Tuesday 9 October 12

Consequences (cont)

» Permits refinement of operations and representation.

— The Singleton class may be subclassed, an application
can be configured with an instance of the class you
need at runtime.

o Permits a variable number of instances.

— The same approach can be used to control the number
of instances that can exist in an application, only the
operation that grants access to the instance(s) must be
provided.

» More flexible than class operations.

: Nuyts Roel
imec B |

Tuesday 9 October 12

Example Code

public class MazeFactory {
private static MazeFactory instance = null;
public static MazeFactory getInstance () {
if (instance == null) {

instance = new MazeFactory () ;
return instance;
private MazeFactory();

// rest of the interface

//

imec AR

Tuesday 9 October 12

Example Code

public class Main {
public static void main (String[] args) {
MazeGame gmg = new MazeGame () ;
//MazeFactory factory = new MazeFactory();
MazeFactory factory = MazeFactory.getInstance();

Maze mz = gmg.createMaze (factory);

Tuesday 9 October 12

Known Uses

» Every time you want to limit the creation of
additional object after the instantiation of the first
one. This is usefull to limit memory usage when
multiple objects are not necessary.

.uyts Roel | |4

lmec

Tuesday 9 October 12

Questions

» What is the difference with a global variable?

» Gamma (one of the authors of the book on Design
Patterns) recently pointed out that he was very
unhapy with this pattern. More specifically he claims
that it usually indicates bad design. Can you imagine
what he thinks so ?

Wuyts Roel

.lmec 2stricted 2007 115

Tuesday 9 October 12

Discussion of Design Patterns

Abstract Factory

Tlcle el (||

Tuesday 9 October 12

Abstract Factory

» Category
— Creational
e Intent

— Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

e Motivation
- User interface toolkit for multiple look-and-feel standards.

— Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

imec N

Tuesday 9 October 12

Motivation (cont)

» Motivation (cont)

Tlcle

WidgetFactory (et Client
CreateScroliBarn) -
CreateWindow() Window =&
[|
:--n-| PMWindow MotifWindow |e#--,
I |
]]
i i
MotifWidgetFactory pel PMWidgetFactory |—-coeoo-- ! |
CreataeScroliBar(} E CreateScrollBar() E E
CroateWindow() : CreateWindow() : ScrollBar :
} |]
s] -
E -+ PMScroliBar | [MotifScrollBar - -!
]
1]
I 1

Tuesday 9 October 12

s Roel
2007

118

Applicability

» Use the Abstract Factory pattern when

— a system should be independent of how its products
are created, composed and represented.

— a system should be configured with one of multiple
families of products.

— a family of related product objects is designed to be
used together, and you need to enforce this constraint.

— you want to provide a class library of products, and
you want to reveal just their interfaces, not their
implementations.

Talcle B | 119

Tuesday 9 October 12

Structure

o Structure

AbstractFactory

CreateProductAf)
CraatefroductB()

ConcreteFactory1

ConcreteFactory2

CreateProductA()
CreateProductB()

CreateProductAl)
CreateProduciB{)

Tlcle

Tuesday 9 October 12

-

Client

AbstractProductA (e

--#= ProductA2 ProductA1 4--:
'
AbSIractProduct ja——————
:
| | |
--m ProductB2 ProductBl = --:

R 6e|
007

120

Participants

» AbstractFactory

— Declares an interface for operations that create
abstract product objects.

- ConcreteFactory

- Implements the operations to create concrete product
objects.

+» AbstractProduct

— Declares an interface for a type of product object.

Talcle B | 12

Tuesday 9 October 12

Participants (cont)

e ConcreteProduct

— Defines a product object to be created by the
corresponding concrete factory.

— Implements the AbstractProduct interface.
» Client

— Uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

imec -

122

Tuesday 9 October 12

Collaborations

* Normally a single instance of ConcreteFactory is
created at run-time. This concrete factory creates
products having a particular implementation.

o AbstractFactory defers creation of product objects to
its ConcreteFactory subclass.

- Wuyts Roel | 23

Tlcle Kehg

Tuesday 9 October 12

Consequences

o It isolates concrete classes.

— The abstract factory encapsulates the responsibility
and the process of creating product objects, it isolates
clients from implementation classes.

— Product class names are isolated in the implementation
of the concrete factory and do not appear in the client
code.

» It makes exchanging product families easy.

— The concrete factory appears only one in the
application - that is, where it is instantiate — to it is
easy to replace.

mecC e | 124

Tuesday 9 October 12

Consequences (cont)

o It promotes consistency among products.

— When products of one family are designed to work
together, it is important for an application to use
objects from one family only.

— The abstract factory makes this easy to enforce.

» Supporting new kinds of products is difficult.

— Because the abstract factory interface fixes the set of
products that can be created, it is not easy to add new
products.

— This would require extending the factory interface
which involves extending changing the abstract factory
and all its subclasses.

IMQeC 4 g;sz%%e; 125

Tuesday 9 October 12

Example Code

public abstract class MapSite {
public abstract void enter();

public class Room extends MapSite/{
int roomNumber;
MapSite[] sides = new MapSite[4];
public Room(int roomNo) {
roomNumber = roomNo;
}
public MapSite getSide(int direction) {
return sides[direction];
}
public void setSide (int direction, MapSite site) {
sides[direction] = site;
}
public void enter () {};

Tlcle Roe | 126

Tuesday 9 October 12

Example Code

public class Wall extends MapSite {

public void enter () {};

public class Door extends MapSite {
Room roomOne;
Room roomTwo;
boolean isOpen;
public Door (Room rooml, Room room?2) {
roomOne = rooml;
roomTwo = room2;
}
public Room otherSideFrom (Room room) {}

public void enter () {};

Tlcle el (|7

Tuesday 9 October 12

Example Code

public class Maze {
VA
public Maze () {
VA
}

public void addRoom (Room room) {
/...

}

public Room roomNo (int roomNbr) {
/...

}

public class Direction {
static int north = 0;
static int south = 1;
static int east = 2;

static int west = 3;

Tlcle el (|9

Tuesday 9 October 12

Example Code

//This is a bad implementation, imagine you want to have other Mazes!
public class BadMazeGame {

public Maze createMaze () {

Maze newMaze = new Maze () ;

Room rl = new Room(1l);

Room r2 = new Room(2) ;

Door theDoor = new Door(rl, r2);

newMaze.addRoom(rl) ;

newMaze.addRoom (r2) ;

rl.setSide(Direction.north, new Wall());
rl.setSide

rl.setSide

Direction.east, theDoor);

Direction.south, new Wall()):
r2.setSide (Direction.north, new Wall());
r2.setSide
r2.setSide

(

(

(
rl.setSide(Direction.west, new Wall());

(

(Direction.east, new Wall());

(Direction.south, new Wall());
r2.setSide (Direction.west, theDoor);
return newMaze;

}

imoc 5 |

Tuesday 9 October 12

Example Code

public abstract class MazeFactory {
public Maze makeMaze () {
return new Maze ()
}
public Wall makeWall () {
return new Wall (),
}
public Room makeRoom (int n) {
return new Room (n) ;
}
public Door makeDoor (Room rl, Room r2) {

return new Door(rl, r2);

}

public class RegularMazeFactory extends MazeFactory {}

lmec | 130

Tuesday 9 October 12

Example Code

public class GoodMazeGame {

public Maze createMaze (MazeFactory factory) {

Maze newMaze = factory.makeMaze ()

Room rl = factory.makeRoom (1) ;

Room r2 = factory.makeRoom(2) ;

Door theDoor = factory.makeDoor (rl, r2);

newMaze.addRoom (rl) ;

newMaze.addRoom (r2) ;

rl
rl
rl
rl
r2
r2
r2
r2

.setSide (Direction
.setSide (Direction.
.setSide (Direction.
.setSide (Direction
.setSide (Direction.
.setSide (Direction
.setSide (Direction

.setSide (Direction

return newMaze;

}

Tlcle

Tuesday 9 October 12

.north,

east,

south,

.west,

north,

.east,
.south,

.west,

factory.makeWall ());
theDoor) ;

factory.makeWall ());
factory.makeWall ());

factory.makeWall ());
factory.makeWall ());

factory.makeWall ());
theDoor) ;

s Roel
2007

131

Example Code

public class Main {
public static void main (String[] args) {
BadMazeGame bmg = new BadMazeGame () ;

Maze mzl = bmg.createMaze ()
GoodMazeGame gmg = new GoodMazeGame () ;

RegularMazeFactory factory = new RegularMazeFactory():;

Maze mz2 = gmg.createMaze (factory);

Tlcle el (|39

Tuesday 9 October 12

Known Uses

» Usually used in toolkits for generating look-and-feel
specific user interface objects.

* Also used to achieve portability across different
window systems.

" ts Roel
i 133

Imec

Tuesday 9 October 12

Questions

» Describe the working of the abstract factory pattern
with your own words.

» What pattern(s) is (are) often used together with the
abstract factory pattern?

" ts Roel
y |34

Imec

Tuesday 9 October 12

Discussion of Design Patterns

Tuesday 9 October 12

Proxy

o Category
— Structural

e Intent

— Provide a surrogate or placeholder for another object to control
access to it.

e Motivation

— Defer the full cost of the creation and initialisation of an object
until we actually need it.

— For example: a document with lots of graphical objects can be
expensive to create, but opening it should be fast.

— A proxy could act as a stand-in for the real objects.

itmec s007 | 136

Tuesday 9 October 12

Kinds of Proxies

a remote proxy provides a local
representative for an object in a
different address space.

a virtual proxy creates expensive
objects on demand.

lient class

a protection proxy controls access

to the original object and are
- useful when objects have
‘ different access rights.

a smart reference is a
replacement for a bare pointer
Real class that performs additional actions
when an object is accessed: e.q.
counting references, loading a
persistent object when it is first
referenced, locking the real
object, ...

: Wuyts Roel
lmec : restricl:gdszo%% | |37

Tuesday 9 October 12

Structure

o Structure

Clign i Subjec'

Request()

realSubject

RealSubject | Proxy
Request() Recuest(). O---------- .r'e'alSubiect->Request(): ﬁ
imec %‘*7' 138

Tuesday 9 October 12

Participants

* Proxy

— Maintains a reference that lets the proxy access the real
subject.

— Provides an interface identical to the Subject’s so that a
proxy can be substituted for the real subject.

— Controls access to the real subject and may be responsible
for creating and deleting it.

— Remote proxies are responsible for encoding a request and

its arguments and for sending the request to the real
subject in the other address space.

— Virtual proxies may cache information about the real subject
so that they can postpone accessing it.

— Protection proxies check that the caller has the access
permission to perform a request.

i(mec F2007 | 139

Tuesday 9 October 12

—

%

Participants (cont) and Collaboration =

o Participants (cont)

— Subject

e Defines a common interface for RealSubject and Proxy so that
a Proxy can be used anywhere a RealSubject is expected.

— RealSubject
e Defines the real object that the proxy represents.
» Collaboration

— Proxy forwards requests to RealSubject when
appropriate, depending on the kind of Proxy.

i(mec 2007

|40

Tuesday 9 October 12

Consequences

» The Proxy pattern introduces a level of indirection
when accessing an object. This indirection has many
uses:

— A remote proxy can hide the fact that the object
resides in a different address space.

— A virtual proxy can perform optimisations.

— Both protection proxies and smart pointers allow
additional housekeeping.

IMeC - | 141

Tuesday 9 October 12

Consequences (cont)

e The proxy patterns can be used to implement “copy-
on-write”.

— To avoid unnecessary copying of large objects the real
subject is referenced counted.

— Each copy requests increments this counter but only
when a clients requests an operation that modifies the
subject the proxy actually copies it.

i(mec S0 | 142

Tuesday 9 October 12

Example Code

public interface IExampleClass {
public void methodl () ;
public void method2 () ;
public void print();
}
public class ExampleClass implements IExampleClass {
private String name;
public ExampleClass (String n) {
name = n;
}
public void methodl () {
System.out.println(name + " executed ExampleClass methodl");
}
public void method2 () {
System.out.println(name + " executed ExampleClass method2");
}
public void print () {
System.out.println ("My name is " + name);

}

lMmec ooy | 143

Tuesday 9 October 12

Example Code

public class ExampleClassProxy implements IExampleClass({
private String name;
private ExampleClass eClass = null;
public ExampleClassProxy (String n) {
this.name = n;
}
public void methodl () {
getInstance () .methodl () ;
}
public void method2 () {
getInstance () .method2 () ;
}
public void print () {
System.out.println ("My name is " + name);
}
/...

lMmec oy | 144

Tuesday 9 October 12

Example Code

public IExampleClass getInstance () {
if (eClass == null) {
eClass = new ExampleClass (name) ;

System.out.println("Created the ExampleClass");

return eClass;

Tuesday 9 October 12

Example Class

public class Main {
public static void main (String[] args) {
IExampleClass e = new ExampleClassProxy ("Andy") ;
e.print (),
e.methodl () ;

e.method2 () ;

Tuesday 9 October 12

Known Uses

» Encapsulators can be implemented as proxies.

*» They are often used to represent local
representatives for distributed objects.

» They have been used in textbuilding tools to enhance
performance.

MeC icea 2007 | 147

Tuesday 9 October 12

Questions

o If a Proxy is used to instantiate an object only when
it is absolutely needed, does the Proxy simplify code?

lmec S2007 | 148

Tuesday 9 October 12

Discussion of Design Patterns

Tuesday 9 October 12

Adapter

o Category
— Structural
o Intent

— Convert the interface of a class into another interface clients
expect. Lets classes with incompatible interfaces work
together.

e Motivation

— Sometimes a toolkit class is not reusable because its interface
does not match the domain-specific interface an application
requires.

— A drawing editor has one abstraction for lines and textboxes,
but textbox has a different interface and implementation.

i(mec 2007 | 150

Tuesday 9 October 12

Motivation (cont)

DrawingEditor |———=# Shape —] TextView
BoundingBox{) GetExtent()
CreateManipulator()
fext
Line TextShape
BoundingBox() BoundingBox() o R retum text-=GetExtent()
CreateManipulator() CrealeManipulator() O-f----=

=== retum new TextManipulator

Tlcle E | 151

Tuesday 9 October 12

Applicability

» Use Adapter when

— You want to use an existing class, and its interface
does not match the one you need.

- You want to create a reusable class that cooperates
with unrelated or unforeseen classes, which do not
necessarily have compatible interfaces.

— (object adapter only) You need to use several existing
subclasses, but it's impractival to adapt their interface
by subclassing every one. An object adapter can adapt
the interface of its parent class.

i(mec F2007 | 152

Tuesday 9 October 12

Structure

o Structure

— Class ;:rl::ni-ar

Chient

o Targer |

Tuesday 9 October 12

Request()

A

Adaptee
SpecificRequest()

A

(implementation)

Adapter

Request() o SpecificRequest() ﬁ

Target

i

Adapter

Requesi() O-

Adaptee
SpecificRequest()

adaptee->SpecificRequest() ﬂ

Participants and Collaborations

e Participants
- Target
e Defines the domain-specific interface that Client uses.

- Client

e Collaborates with objects conforming to the Target interface.

- Adaptee

e Defines an existing interface that needs adapting.

- Adapter

e Adapts the interface of Adaptee to the Target interface.
* Collaborations

— Clients call operations on an Adapter instance. In turn, the adapter calls
Adaptee operations that carry out the request.

lMmec ooy | 154

Tuesday 9 October 12

Consequences

» How much adapting does Adapter do?

— Ranges from simple interface conversion to supporting an
entirely different set of operations.

* Pluggable adapters.

- By building interface adaption into a class, it becomes
more reusable because it does not assume the same
interface to be used by other classes.

* Using two-way adapters to provide transparency.

— An adapted object no longer conforms to the Adaptee
interface, so it can’t be used as is wherever an Adaptee
object can. Two-way adapters can provide such
transparency.

IMQeC 4 g;sz%%e; 155

Tuesday 9 October 12

Example Code

// has a boundingbox for its bounderies

// uses a Manipulator to animate a Shape when a user manipulates it

interface Shape {

public void boundingBox (Point bottomLeft, Point topRight);

public Manipulator createManipulator();

// has origin, height and width instead

// has no Manipulator

public class TextView {
public void getOrigin (Coord x, Coord vy) {};
public void getExtent (Coord width, Coord height) {};

public boolean isEmpty () {return true;};

007 | 156

Tlcle

Tuesday 9 October 12

Example Code

// this is an example of a class-adaptor

public class CTextShape extends TextView implements Shape {
//convert one interface to another
public void boundingBox (Point bottomLeft, Point topRight) {
Coord bottom = new Coord():;
Coord left = new Coord();
Coord width = new Coord() ;
Coord height = new Coord():;
getOrigin (bottom, left);
getExtent (width, height);
bottomLeft = new Point (bottom, left);
topRight = new Point (new Coord(bottom.value + height.value),

new Coord(left.value + width.value));
i
//direct forwarding
public boolean isEmpty () {return super.isEmpty();};
//assume TextManipulator exists
public Manipulator createManipulator () {

return new TextManipulator (this);
|

i(mec S07 | 157

Tuesday 9 October 12

Example

// this is an example of an object-adaptor
public class OTextShape implements Shape {
TextView text;
OTextShape (TextView t) {
text = t;
}
public void boundingBox (Point bottomLeft, Point topRight) {
Coord bottom = new Coord() ;
Coord left = new Coord():;
Coord width = new Coord();
Coord height = new Coord();
text.getOrigin (bottom, left);
text.getExtent (width, height);
bottomLeft = new Point (bottom, left);

topRight = new Point (new Coord(bottom.value + height.value),
Coord(left.value + width.value));

i

public boolean isEmpty () {

return text.isEmpty();};

public Manipulator createManipulator () {
return new TextManipulator (this);

b

Tlcle

Tuesday 9 October 12

new

s Roel
2007

158

Questions

» Would you ever create an Adapter that has the same
interface as the object which it adapts? Would your
Adapter then be a Proxy?

IMeC B | 159

Tuesday 9 October 12

Discussion of Design Patterns

Observer

Tuesday 9 October 12

Observer

o Category
- Behavioral
e Intent

- Define a one-to-many dependency between objects so
that when one object changes state, all its dependants
are notified and updated automatically.

e Motivation

— different types of GUI elements depicting the same
application data.

— different windows showing different views on the same
application model.

i(mec 2007 | 16!

Tuesday 9 October 12

Applicability

» When an abstraction has two aspects, one dependant
on the other. Encapsulating these aspects in seperate
objects lets you vary and reuse them independently.

» When a change to one object requires changing
others, and you don't know how many objects need
to be changed.

» When an object should be able to notify other objects
without making assumptions about who these
objects are. In other words, you do not want these
objects tightly coupled.

1 ' Wuyts Roel
lmec imec restricl:gdszo%% 162

Tuesday 9 October 12

Structure

Subject observers wa Observer
Attach({Observer) Update!)
Detach(Observer) . N
. for all o in observers |
Notiy() o------ == o->Update) A
j
A ConcreteObserver
. subject Z
0--F-4 observerState =
ConcreteSubject jug Update) subject->GetState)
GetState() ©@---r- . ™ observerState
SetStatel) refum subjectState
subjectState
imec az7 | 163

Tuesday 9 October 12

Participants

» Subject

— knows its observers. Any number of Observer objects
may observe an object.

— provides an interface for attaching and detaching
Observers.

o Observer

— defines an updating interface for objects that should be
notified of changes in a subject.

itmec s07 | 164

Tuesday 9 October 12

Participants (cont)

» ConcreteSubject
— stores state of interest to ConcreteObserver objects.

— sends a notification to its observers when its state
changes.

» ConcreteObserver
— maintains a reference to a ConcreteSubject object.

— stores state that should stay consistant with the
subject's.

- implements the Observer updating interface.

i(mec 2007

165

Tuesday 9 October 12

Collaborations

aConcreteSubject aConcreteObserver anotherConcreteObserver

| SetState() |
ot
Notify()
‘_
Update())

GetState()

il
Update()

_l_l‘ GetState()

lmec ' 166

Tuesday 9 October 12

Consequences

o Abstract and minimal coupling between Subject and
Observer.

- T
O
C

ne subject does not know the concrete class of any
pserver. Concrete subject and concrete observer

asses can be reused independently.

» Support for broadcast communication.

— The notification a subject sends does not need to
specify a receiver, it will broadcast to all interested
parties.

Tlcle

uyts Roel
ted 2007

167

Tuesday 9 October 12

Consequences (cont)

» Unexpected updates.

— Observers don’t have knowledge about each other’s
presence, a small operation may cause a cascade of
updates.

Tlcle Ro | 168

Tuesday 9 October 12

Example Code

public class Subject {
private List observers = new LinkedList();
protected Subject();
void attach (Observer o) {
observers.add (o) ;
i
void detach (Observer o) {
observers.remove (0) ;
i

void notifyObservers () {

ListIterator i = observers.listIterator (0);
while (i.hasNext ()) {
((Observer) i.next()) .update (this);

}s

Tlcle el || 6

Tuesday 9 October 12

Example Code

public abstract class Observer ({
abstract void update (Subject changedSubject);

protected Observer();

public class ClockTimer extends Subject ({

int hour = 0;
int minutes = 0;
int seconds = 0;

int getHour () {
return hour;

}

int getMinutes|() {
return minutes;

}

int getSeconds () {

return seconds;

}
/7.

Tlcle el (|7

Tuesday 9 October 12

Example Code

void tick () {
//updating the time
if (seconds == 59) {
if (minutes == 59) {
if (hour == 23){
hour = 0;
minutes = 0;
seconds = 0;
}
else {
seconds = 0;
minutes = 0;
hour = hour + 1;

}

else {
seconds = 0;
minutes = minutes + 1;
}
}
else seconds = seconds + 1;

notifyObservers () ;

}

Tlcle el |7

Tuesday 9 October 12

Example Code

public class ClockDisplay extends Observer{
private ClockTimer subject;
private String clocktype;

ClockDisplay(ClockTimer c, String type) {
subject = c;

subject.attach (this) ;

clocktype = type;

}

void update (Subject changedSubject) {
if (changedSubject == subject) {
displayTime () ;

void displayTime () {

System.out.println(clocktype + "-->" + subject.getHour()+ ":"
subject.getMinutes ()+ ":" + subject.getSeconds());

}

Tlcle B 172

Tuesday 9 October 12

Example Code

//if not interrupted, will continue for 24 hours
public class Main {
public static void main (String[] args) {
ClockTimer ¢ = new ClockTimer () ;
ClockDisplay dl = new ClockDisplay(c, "Digital");
ClockDisplay d2 = new ClockDisplay(c, "Analog");
int count = 0;
while (count < (60*60*24)) {
c.tick();
try {
Thread.sleep(1000) ;
} catch (InterruptedException e) {
e.printStackTrace () ;

}

count = count + 1;

Digital-->0:0:1
Analog-->0:0:1
Digital-->0:0:2
Analog-->0:0:2

Tlcle b 173

Tuesday 9 October 12

Known Uses

o Best known use is Smalltalk Model/View/Controller.

lMmec oy | 174

Tuesday 9 October 12

Questions

» There are two methods for propagating data to
observers with the Observer design pattern: the
push model and the pull model. Why would one
model be preferable over the other? What are the
trade-offs of each model?

» In what real-world system can we expect encounter
the Observer pattern quite often?

- . Wuyts Roel
lmeC estricted 2007 I 75

Tuesday 9 October 12

Discussion of Design Patterns

Chain of Responsibility

Tlcle R | 176

Tuesday 9 October 12

Chain of Responsibility

o Category
- Behavioral
e Intent

— Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the
request along the chain until an object handles it.

o .

» Motivation \Jnd e amionton)
[handser M o V{namm 3}
(anOKButton badind
kh.ia ndler o _)
specific gme;:

i(mec 207 | 177

Tuesday 9 October 12

Applicability

» Use Chain of Responsibility when

— more than one object may handle a request, and the
handler is not known a priori.

— you want to issue a request to one of several objects
without specifying the receiver explicitly.

- the set of objects that can handle a request should be
specified dynamically.

i(mec 2007 | 178

Tuesday 9 October 12

Structure

Tlcle

Tuesday 9 October 12

'

SUCCESSOr
Client w Handier
HandleRequest(}
| |
ConcreteHandler1 ConcreteHandler2
HandleRequest() HandleRequest()
-
faClient ~
aConcreteHandler
\aHandler .
- SUCCESSOr @

P,

aConcreteHandlerw
SUCCEessor JJ

Roel
007

179

Participants

e Handler
— defines an interface for handling objects.
— (optional) implements the successor link.
» ConcreteHandler
- handles requests it is responsible for.
— can access its successor.

— if the ConcreteHandler can handle the request, it does so,
otherwise it forwards the request to its successor.

e Client

— initiates the request to a ConcreteHandler object on the chain.

itmec 207 | 180

Tuesday 9 October 12

Collaborations and Consequences

e Collaborations

— When a client issues a request, the request propagates
along the chain until a ConcreteHandler object takes
responsibility to handle it.

» Conseguences

— Reduced Coupling

e The pattern frees an object from knowing which other object
handles a request. An object only has to know that a request
will be handled appropriately.

i(mec 2007 | 181

Tuesday 9 October 12

Consequences (cont)

» Added flexibility in assigning responsibilities to objects.

— You can add or change responsibilities for handling a request
by adding or changing the chain at runtime.

— Receipt is not guaranteed.

e Since a request has no implicit receiver, there is no guarantee
that it will be handled, it could fall of the end of the chain
without being handled.

i(mec 2007 | 182

Tuesday 9 October 12

Example Code

public class Topic {
static int NO HELP TOPIC
static int PRINT TOPIC = 1;
static int PAPER ORIENTATION TOPIC = 2;

static int APPLICATION TOPIC = 3;

Tuesday 9 October 12

Example Code

public class Helphandler {
private Helphandler successor = null;
private int topic = Topic.NO HELP TOPIC;
protected Helphandler();
public Helphandler (Helphandler h, int topicValue) {
if(h !'= null) {
successor = h;
}
topic = topicValue;
}
boolean hasHelp () {
return topic != Topic.NO HELP TOPIC;
}
void setHandler (Helphandler h, int topicValue) {
successor = h;
topic = topicValue;
}
void handleHelp () {
if (successor != null) {

successor.handleHelp () ;

lMmec oy | 184

Tuesday 9 October 12

Example Code

public class Widget extends Helphandler ({
private Widget parent;
protected Widget () ;

protected Widget (Widget w, int topicValue) {

super (w, topicValue);
parent = w;
}

}
public class Button extends Widget/{

public Button (Widget d, int topicValue) {
super (d, topicValue);

}

public void handleHelp () {

if (hasHelp()) {

System.out.println ("Button displays topic.");

}

else {
super.handleHelp () ;
}

Tlcle

Tuesday 9 October 12

Roel
007

185

Example Code

public class Dialog extends Widget/{
public Dialog(Helphandler h, int topicValue) {
setHandler (h, topicValue);
}
public void handleHelp () {
if (hasHelp()) {
System.out.println("Dialog displays topic.");
}
else {

super.handleHelp () ;

Tlcle el || g

Tuesday 9 October 12

Example Code

public class Application extends Helphandler({
public Application (int topicValue) {

super (null, topicValue);

public void handleHelp () {

System.out.println ("Application displays all possible topics.");

Tuesday 9 October 12

Example Code

public class Main {
public static void main (String[] args) {
Application a = new Application(Topic.APPLICATION TOPIC) ;
Dialog dl = new Dialog(a, Topic.PRINT TOPIC);
Button bl = new Button(dl, Topic.PAPER ORIENTATION TOPIC);
bl.handleHelp() ;
Button b2 = new Button(dl, Topic.NO HELP TOPIC);
b2 .handleHelp () ;
Dialog d2 = new Dialog(a, Topic.NO HELP TOPIC);
Button b3 = new Button (dZ, Topic.NO HELP TOPIC);
b3.handleHelp() ;

}

Button displays topic.
Dialog displays topic.
Application displays all possible topics.

itmec so07 | 188

Tuesday 9 October 12

Known Uses

» Different class libraries use this pattern, giving
different names to handlers, e.g. when a user clicks
on a mouse button, an event gets generated and
passed along the chain.

» Is also used in graphical systems, where a graphical
object propagates the request for an update to its
enclosing container object, because that object has
more information about its context.

Wuyts Roel

l m e C) restricted 2007 I 89

Tuesday 9 October 12

Questions

» What pattern(s) would you use in combination with
the Chain of Responsibility? Why?

lmec 2087 | 190

Tuesday 9 October 12

Discussion of Design Patterns

Flyweight

Tuesday 9 October 12

Flyweight

o Category
— Structural
e Intent

— Use sharing to support large numbers of fine-grained
objects efficiently.

e Motivation

— Some applications benefit from using objects in their
design but a naive implementation is prohibitively
expensive because of the large number of objects.

— For example a document editor uses an object for each
character in the text.

i(mec 2007 | 192

Tuesday 9 October 12

Motivation (cont)

Tuesday 9 October 12

Motivation (cont)

——~ .
] [— -~ column
== Eiie W
v D T
< character
\\ i : objects
\
\\
B T row
(T 1 S
\
\ .
5\ s column
object

column

ST
HEEE

lMmec oy | 194

Tuesday 9 October 12

Applicability

* Apply the Flyweight pattern when all of the following
are true:

— An application uses a large number of objects.
— Storage cost is high because of the quantity of objects.
— Most objects can be made extrinsic.

— Many groups of objects can be replaced by relatively
few shared objects once extrinsic state is removed.

— The application does not depend on object identity.

IMecC B | 195

Tuesday 9 October 12

Structure

FlyweightFactory

flyweights
| Lyweig

(lwmy\

_tyweighs

-

GetFlyweightikey)

$

=i

Flyweight

Operation{extrinsicState)

jelse{
create new flyweigh

il (flyweight[key] exists) {
return existing flyweight;

=

add it to pool of fiyweights,;
retum the new flyweight;

ConcreteFlyweight

UnsharedConcreteFlyweight

Operation(extrnsicState)

Operation(extrinsicState)

intrinsicState

allState

Tuesday 9 October 12

Participants

* Flyweight

— Declares an interface through which flyweights can receive and
act upon extrinsic state.

» Concrete Flyweight

- Implements the flyweight interface and adds storage for
intrinsic state.

— A concrete flyweight object must be shareable, i.e. state must
be intrinsic.

» Unshared Concrete Flyweight

— Not all flyweights subclasses need to be shared, unshared
concrete flyweight objects have concrete flyweight objects at
some level in the flyweight object structure.

Tlcle S0 | 197

Tuesday 9 October 12

Participants (cont)

» Flyweight Factory
— Creates and manages flyweight objects.

— Ensures that flyweights are shared properly; when a
client requests a flyweight the flyweight factory
supplies an existing one from the pool or creates one
and adds it to the pool.

* Client
— Mainrains a reference to flyweight(s).

— Computes or stores the extrinsic state of flyweight(s).

i(mec 2007

198

Tuesday 9 October 12

Collaborations

» State that a flyweight needs to function must be characterised
as either intrinsic or extrinsic. Intrinsic state is stored in the
concrete flyweight object; extrinsic state is stored or computed
by client objects. Clients pass this state to the flyweight when
invoking operations.

» Clients should not instantiate concrete flyweights directly.
Clients must obtain concrete flyweight objects exclusively from
the flyweight factory object to enshure that they are shared

properly.

- : Wuyts Roel
lmeC estricted 2007 I 99

Tuesday 9 October 12

Consequences

* Flyweights may introduce run-time costs associated
with transferring, finding, and/or computing extrinsic

state.

*» The increase in run-time cost are offset by storage
savings which increase

— as more flyweights are shared.
— as the amount of intrinsic state is considerable.

— as the amount of extrinsic state is considerable but can
be computed.

) Wuyts Roel
g 200

imec

Tuesday 9 October 12

Consequences (cont)

» The flyweight pattern is often combined with the

composite pattern to bui
nodes. Because of the s
store their parent which

d a graph with shared leaf
naring, leaf nodes cannot
nas a major impact on how

the objects in the hierarchy communicate.

Tlcle

Tuesday 9 October 12

- Wuyts Roel
q::ted 2007

201

Example Code

» We will see a nice example of a Flyweight in the
exercises ;-)

Tlcle | 202

Tuesday 9 October 12

Known Uses

» Has been used in e.g. document editors. When first
introduced in such an editor, only the style and and
character code of the characters were intrinsic, while
the position of the characters was extrinsic. This
made the program very fast. In a document
containing 180.000 characters, only 480 character
objects had to be allocated.

» Can also be used to abstract the look and feel of
layouts. Only the objects of the flyweight pool have
to be replaced to change a complete layout.

Wuyts Roel

lmec imec restricted 2007 203

Tuesday 9 October 12

Questions

* Give a non-GUI example of a flyweight.

* What is the minimum configuration for using
flyweight? do you need to be working with
thousands of objects, hundreds, tens?

*» Suppose you have to implement a texteditor. The
text of the texteditor consists of lines and characters
on the lines.

IMmecC B | 204

Tuesday 9 October 12

Discussion of Design Patterns

Tuesday 9 October 12

Facade

 Category
— Structural
o Intent

— Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

e Motivation

b R Client classes

N

,\\ \
9\ — |\ | Subsystem classes

i(mec 2007

206

Tuesday 9 October 12

Motivation (cont)

e Provide a simple interface to a complex subsystem.

e Decouple a subsystem from clients and other
subsystems.

e Create layered subsystems by providing an interface
to each subsystem level.

Wuyts Roel 207

imec 'c‘te.d 2007

Tuesday 9 October 12

Example

Compiler

compilar
subsystem

classes

Stream

A

—-I BytecodeStream

Compilel)

'-l Scanner - -

Token I-li

= bi Parser

Symbol |¢7

-'I ProgramNodeBuilder ----I ProgramNode

A

CodeGenerator I‘ aimi StatementNode

ExpressionNode

StackMachineCodeGenerator

RISCCodeGenerator

VariableNode

Tlcle

Tuesday 9 October 12

-._ ts Roel
ed 2007

208

Applicability

» Use the Facade pattern when

— you want to provide a simple interface to a complex
subsystem.

— there are many dependencies between clients and the
implementation classes of an abstraction. Introduce a facade
to decouple the subsystem from clients and other subsystems,
thereby promoting subsystem independence and portability.

— you want to layer your subsystems. Use a facade to define an
entry point to each subsystem level. If subsystems are
dependent, then you can simplify the dependencies between
them by making them communicate with each other solely
through their facades.

LMQCC :‘"’2_%%‘*7' 209

Tuesday 9 October 12

Structure

SURSysSiem classes

Facade

Tlcle

Tuesday 9 October 12

Roel
007

210

Participants

» Facade

— knows which subsystem classes are responsible for a
request.

— delegates client requests to appropriate subsystem
objects.

* Subsystem classes
- implement subsystem functionality.
— handle work assigned by the Facade object.

- have no knowledge of the facade; that is, they keep no
references to it.

i(mec G007 | 211

Tuesday 9 October 12

Collaborations

» Clients communicate with the subsystem by sending
requests to Facade, which forwards them to the
appropriate subsystem object(s). Although the
subsystem objects perform the actual work, the
facade may have to do work of its own to translate
its interface to subsystem interfaces.

e Clients that use the facade don't have to access its
subsystem objects directly.

- -- Wuyts Roel
l m e C restricted 2007 2 I 2

Tuesday 9 October 12

Consequences

» The Facade pattern offers the following benefits:

— It shields clients from subsystem components, thereby
reducing the number of objects that clients deal with
and making the subsystem easier to use.

— It promotes weak coupling between the subsystem and
its clients. Weak coupling lets you vary the components
of the subsystem without affecting its clients.

— It doesn't prevent applications from using subsystem
classes if they need to. Thus you can choose between
ease of use and generality.

IMecC | 213

Tuesday 9 October 12

Example Code

public class Compiler {
public void Compile (InputStream input, OutputStream output) {
Scanner scanner = new Scanner (input);
ProgramNodeBuilder builder;
Parser parser;
parser.parse (scanner, builder);
RISCCodeGenerator generator = new RISCCodeGenerator (output)
ProgramNode parseTree = builder.GetRootNode () ;

parseTree.traverse (generator) ;

Roel

Tlcle -

4

Tuesday 9 October 12

Known Uses

» We have seen the compiler example, but this pattern
can be used for other complicated frameworks as
well.

imec e | 215

Tuesday 9 October 12

Questions

o Describe the differences between Facade and
Adapter.

* How complex must a sub-system be in order to
justify using a facade?

» What are the additional uses of a facade with
respect to an organization of designers and

developers with varying abilities? What are the
political ramifications?

im eC . Wuyts Roel

estricted 2007 216
Tuesday 9 October 12

Wrap-up

» Architectures "can't be made, but only generated,
indirectly, by the ordinary actions of the people, just
as a flower cannot be made, but only generated from
the seed.” (Alexander)

— patterns describe such building blocks

— applying them implicitly changes the overall structure
(architecture)

— whether it is on classes, components, or people

ImecC icea 2007 | 217

Tuesday 9 October 12

Conclusion

» Can you answer this?
- How does Strategy improve coupling and cohesion?

— Does Abstract Factory says the same than the Creator
GRASP Pattern?

— Can you give examples of patterns that can be used
together ?

— When does it make sense to combine the Iterator and
the Composite Pattern ?

itmec s007 | 218

Tuesday 9 October 12

