Ontwerp van SoftwareSystemen

5 Unit Testing, Refactoring and ?

Profiling (‘

A golden rule...

e Make it Work
» Make it Right
o Make it Fast

lmec Roe

Friday 16 November 12

How does this work?

» First make sure the software does what you want

— use unit tests

» Then rework the code until it speaks for itself

— use refactorings

» Then optimize the performance, if needed

— use profiling

IMecC | 3

Friday 16 November 12

Testing

Unit Testing test individual components

Module Testing | test a collection of related components

Sub-System Testing | test sub-system interface mismatches

* test interactions between sub-systems
System Testing | ® tests that the complete system fulfils
requirements

Acceptance Testing | test system with real rather than simulated data

- -- Wuyts Roel
l m e C restricted 2007

Friday 16 November 12

Unit Testing

* How can I trust that changes did not destroy
something?

» What is my confidence in the system ?
» How do I write tests?

» What is unit testing?

uyts Roel

Taslcle s | S

Friday 16 November 12

Tests

» Tests represent your trust in the system
» Build them incrementally

— Do not need to focus on everything

- When a new bug shows up: write a test
» Even better: test first!

— Act as your first client

- Helps finding proper interfaces

» Tests are active documentation: they are always in
sync

lmec icea2007 | 6

Friday 16 November 12

Testing Style

» “The style here is to write a few lines of code, then a
test that should run, or even better, to write a test

that won't run, then write the code that will make it
run.”

— write unit tests that thoroughly test a single class

— write tests as you develop (even before you
implement)

— write tests for every new piece of functionality

» "Developers should spend 25-50% of their time
developing tests.”

'lmec ~ Wuyts Roel

ricted 2007 7/
A
Friday 16 November 12

But I can’t cover anything!

» Sure! Nobody can but:

- When someone discovers a defect in your code, first
write a test that demonstrates the defect.

— Then debug until the test succeeds.

“"Whenever you are tempted to type something
into a print statement or a debugger expression,
write it as a test instead.”

Martin Fowler

i(mec 2007

Friday 16 November 12

Unit Testing

* Ensure that you get the specified behaviour of the
public interface of a class

— Normally tests a single class
* General setup of a test:

— Create a context,

— Send a stimulus,

— Check the results

'l mece “.' L e R

Friday 16 November 12

Example

public class SaleTest extends TestCase

{

/] ...
public void testMakeLineltem() {

Sale fixture = new Sale();

Money total = new Money(7.5);

Money price = new Money(2.5);

[temID id = new ltemID(1);

ProductDescription desc = new ProductDescription(id, price, “product 17);

sale.makeLineltem(desc, 1);
sale.makeLineltem(desc, 2);

assertTrue(sale.getTotal().equals(total));

Tlcle el | |0

Friday 16 November 12

About Failures and Errors

o A failure is a failed assertion

- i.e., an anticipated problem that you test.

e assertEquals(2, myContainer.nrOfElements())
* An error is a condition you didn’t check for.

— e.g. an exception being thrown you did expect

boolean isExceptionThrown = false;

try {
myContainer.get(3);

} catch(IndexOutOfBoundsException e) {
1sExceptionThrown = true;

}

assertTrue(isExceptionThrown);

Talcle

Friday 16 November 12

" yts Roel

icted 2007

Good Unit Tests

» Are repeatable
- have to be deterministic to be useful
» Require no human intervention
- so that they can be automated
* Are “self-described” and tell a story
- to serve as documentation
» Change less often than the system

- they encode stable functionality

IMeC - | 12

Friday 16 November 12

Designing tests

» Build simple tests
* Check that failures are caught
» Run tests frequently (every couple of minutes)

» Test Infrastructure code first, then application-
specific code

» Reuse as much test code as you can (tests are code!)
* Write small tests that test one particular aspect

o Make sure the tests are deterministic

- . Wuyts Roel
lmeC estricted 2007 I 3

Friday 16 November 12

Why spending time testing?

» Find problems soon.
— in context of what you were doing!
» Serve as documentation.

e Ease maintenance and evolution.

- new developers jump in anytime..

» Have something to show all the time.

Tlcle

Friday 16 November 12

-._ ts Roel
ed 2007

|4

Testing Frameworks

» Tests have to be repeatable

» Unit Testing Frameworks implement necessary
infrastructure so that you can set up your tests, run
them frequently, and see the results

e SUnit is “the mother of all unit test frameworks”

— started in Smalltalk

— fanned out to all kinds of other languages

e JUnit, NUnit, CppUnit, ...

) Wuyts Roel | 5

imec s 208

Friday 16 November 12

JUnit overview

» Junit (inspired by Sunit) is a simple “testing
framework” that provides:

— classes for writing Test Cases and Test Suites

— methods for setting up and cleaning up test data
(“fixtures”)

- methods for making assertions

— textual and graphical tools for running tests

i(mec e

Friday 16 November 12

Testing Frameworks

o Key parts
— TestCase: bundles test methods
- Some mechanism to execute test code
(methods, macroes, ...)

— Fixture (= Resource): known set of objects that serves
as a base for a set of test cases

— TestSuite: bundles testcases so that they can be run
together

— TestRunner: runs a testsuite, outputting results

imec -

|7

Friday 16 November 12

A testing scenario

» The framework calls the test methods that you define
for your test cases

— You need to declare a TestRunner
— You specify who will gather the results
— You add the needed tests to the runner

— You run the TestRunner

e this automatically runs all tests, collecting the results

— You pass the results to an Outputter

i(mec e

Friday 16 November 12

JUnit Framework

L= «utility»
A Test can run a number Assert
of concrete test cases
+ assertTrue(boolean)
' + assertEquals(Object, Object
«interlface»
Test

+ countTestCases() : int

+ run‘;estResuIté
4

7 \

Bl

All errors and failures are
collected into a TestResult.

P \
III \\\ '. o
TestSuite TestCase >
ahiiaii TestResult
+ create() , o
+ create(Class) 3 mf i (String) ;void ru(t!u(TestCase)
m o K>——=>| + addError(Test, Throwable)

' + void runBare()

void runTest() + addFailure(Test, Throwable)
A TestSuite s # void setUp() + errors() : Enumeration

bundiles a set of # void tearDown() + failures“ . Enumeration
Tests + name“ - Strinﬂ
S —

i(mec e

Friday 16 November 12

A testing scenario

-

» The framework calls the test methods that you define
for your test cases

] :TestRunner | | :TestSuite | | tc:TestCase | |tr:TestResult|
1 |

I |
| 1 I

run(tr) : : :
| :

:

> run(tr)

> run(te)

setUp

runTest —§

—
C: addFailure
tearDown S =
e = SRR L - e w:)

. - | |

IMecC | 20

Friday 16 November 12

Setup and TearDown

o Executed before and after each test
— setUp allows us to specify and reuse the context

- tearDown makes us clean-up afterwards

#setUp #tearDown

Test method

#zatl) #Maarla #=atl #MaarDo #=satl #earDa

Tlcle a2007 | 21

Friday 16 November 12

» Example unit test for an online ordering system

Tlcle

Friday 16 November 12

Roel
007

)

Mocking & Stubbing

» Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";
private static String HIGHLAND PARK = "Highland Park";
private Warehouse warehouse = new WarehouseImpl();

protected void setUp() throws Exception {
warehouse.add (TALISKER, 50);
warehouse.add (HIGHLAND PARK, 25);
}
public void testOrderIsFilledIfEnoughInWarehouse() {
Order order = new Order (TALISKER, 50);
order.fill (warehouse);
assertTrue(order.isFilled());
assertEquals (0, warehouse.getInventory(TALISKER));
}
public void testOrderDoesNotRemoveIfNotEnough() {
Order order = new Order(TALISKER, 51);
order.fill (warehouse);
assertFalse(order.isFilled());
assertEquals (50, warehouse.getInventory(TALISKER));

lmec icea 2007 | 23

Friday 16 November 12

Mocking & Stubbing

» Example unit test for an online ordering system

public class OrderStateTester extends TestCase {

private static String TALISKER = "Talisker";
private static String HIGHLAND PARK = "Highland Park";
private Warehouse warehouse = new WarehouseImpl(); < CO”abOI’atOI’

protected void setUp() throws Exception {
warehouse.add (TALISKER, 50);
warehouse.add (HIGHLAND PARK, 25);

}
public void testOrderIsFilledIfEnoughInWarehouse() {

Order order = new Order (TALISKER, 50); « teSted ObjeCt

order.fill (warehouse); “ d "
assertTrue(order.isFilled()); system under test

assertEquals (0, warehouse.getInvent

TALISKER));

public void testOrderDoesNotRemoveIfNotEno
Order order = new Order(TALISKER, 51);

order.fill (warehouse); State
assertFalse(order.isFilled()); <
assertEquals (50, warehouse.getInventory(TALISKER)); < ve r'iﬁ Cati on
}
. " yts Roel | 24
lmec icted 2007

Friday 16 November 12

Mocking & Stubbing

» Using mocking (jMock library example)

public class OrderInteractionTester extends MockObjectTestCase {
private static String TALISKER = "Talisker";
public void testFillingRemovesInventoryIfInStock() {

Order order = new Order (TALISKER, 50); Setu D = data

Mock warehouseMock = new Mock(Warehouse.class);

warehouseMock.expects (once()).method("hasInventory") SetuUD - expectations

.with(eq(TALISKER),eq(50))
.will(returnValue(true));
warehouseMock.expects(once()) .method("remove")
.with(eq(TALISKER), eq(50))
.after("hasInventory");

order.fill((Warehouse) warehouseMock.proxy()); exe rCise
warehouseMock.verify(); ve I"ify
assertTrue(order.isFilled());

More info: http://martinfowler.com/articles/mocksArentStubs.html

IMeC icted 2007 | 25

Friday 16 November 12

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

Refactorings

» Refactoring
- What is it?
— Why is it necessary?
— Examples
— Tool support

— Obstacles to refactoring

Tlcle

Friday 16 November 12

R 6e|
007

26

What is Refactoring?

» The process of changing a software system in such a
way that it does not alter the external behaviour of
the code, yet improves its internal structure
[Fowl99a]

* A behaviour-preserving source-to-source program
transformation [Robe98a]

* A change to the system that leaves its behaviour
unchanged, but enhances some non-functional
quality - simplicity, flexibility, understandability, ...
[Beck99a]

1 Wuyts Roel
l m e C c restricted 2007 27

Friday 16 November 12

Typical Refactorings

Class
Refactorings

Method Refactorings

Attribute
Refactorings

add (sub)class to
hierarchy

add method to class

add variable to class

rename class

rename method

rename variable

remove class

remove method

remove variable

push method down

push variable down

push method up

pull variable up

add parameter to method

create accessors

move method to component

abstract variable

extract code in new method

Tlcle

Friday 16 November 12

)
1yts Roel
ed 2007 28

Why Refactoring?

* “Grow, don't build software” (Fred Brooks)

» “"Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.” (Fowler)

» Some argue that good design does not lead to code
needing refactoring ...

- ~ Wuyts Roel
imec s | 29

Friday 16 November 12

Why Refactoring?

o In reality
- Extremely difficult to get the design right the first time
- You cannot fully understand the problem domain
- You cannot fully understand user requirements
— You cannot really plan how the system will evolve
— Original design is often inadequate

- System becomes brittle, difficult to change

imec -

30

Friday 16 November 12

Why Refactoring?

o Refactoring helps you to

— Manipulate code in a safe environment

e Behaviour preserving
— Recreate a situation where evolution is possible
— Understand existing code
» Remember: software needs to be maintained

— This is one way to do it safely

Tlcle

Friday 16 November 12

'ts Roel

12007

31

Examples of Refactoring Analysis

e Rename Method
— existence of similar methods
— references of method definitions
- references of calls
» AddClass
- simple

— namespace use and static references between class
structure

Tlcle

Friday 16 November 12

Roel
007

32

Rename Method

A
bince() balance()
A X = Z R
X |—_B D > B D
v bince() bince() balance() | | balance()
Bb=ne;:13(); ¢ Bb=newB();j Q
b.blnc(); G b.balance(); C
bince() balance()

Tlcle

Friday 16 November 12

-._ ts Roel
ed 2007

33

Rename Method: Do It Yourself

o Check if a method does not exist in the class and
superclass/subclasses with the same "name”

*» Browse all the implementers (method definitions)
» Browse all the senders (method invocations)

» Edit and rename all implementers

* Edit and rename all senders

» Remove all implementers

o Test

: . Wuyts Roel
lmeC estricted 2007 34

Friday 16 November 12

Rename Method

» Rename Method (method, new name)

e Preconditions

— no method exists with the signature implied by new name in the
inheritance hierarchy that contains method

- [Smalltalk] no methods with same signature as method outside
the inheritance hierarchy of method

— [Java] method is not a constructor
* PostConditions
- method has new name
- relevant methods in the inheritance hierarchy have new name
— invocations of changed method are updated to new name
* Other Considerations
- Typed/Dynamically Typed Languages => Scope of the renaming

'l mece “.' L e

| 35

Friday 16 November 12

Add class

Tlcle

Friday 16 November 12

Roel
007

36

Add Class

e Preconditions

— no class and global variable exists with classname in the same
scope

— subclasses are all subclasses of all superclasses
- [Smalltalk] superclasses must contain one class
— [Smalltalk] superclasses and subclasses cannot be metaclasses

e Postconditions

— new class is added into the hierarchy with superclasses as
superclasses and subclasses as subclasses

— new class has name classname

— subclasses inherit from new class and not anymore from
superclasses

o Considerations: Abstractness

i(mec G200 | 37

Friday 16 November 12

Tool Support

» Could do refactoring by hand

— see Rename Method example

o But much better if automated
— easier

— safer

» Which tools are needed to support refactoring?

'lm cC o | 38

Friday 16 November 12

Tool support for refactoring activities

Change Efficiently Failure Proof

Regression Testing

- Repeating past tests
- requires no user interaction

Refactoring Tools
- source-to-source program
transformation

- behaviour preserving - is deterministic

= Improve Structure = Verify damage to previous work

Configuration&Version Management
- track different versions

- track who did what
= can revert to earlier versions

Development Environment

- Fast edit-compile-run
- Integrated in environment

= Convenient

Wuyts Roel
icted 2007 39

Talcle

Friday 16 November 12

Conclusion: Tool Support

Note: Do not apply refactoring tools in isolation!

Smalltalk C++ Java

refactoring tools ++ - () +

rapid edit-compile-run cycles ++ - +-
reverse engineering facilities +- +- +-
regression testing + + +

version & configuration N N N

management
(MeCeC wd 2007 | 40

Friday 16 November 12

Refactoring in Eclipse

[3o

,E(, Problems | @ Javadoc 23\@ Declaration} &l co

Answer the “count” field in the BaseScanner class.

Returns:
Field. Ugly construction, but the class and field

Tlcle

Friday 16 November 12

“ Undo
Revert File
Save

Open Declaration
Open Type Hierarchy
Open Call Hierarchy
Quick Qutline

Quick Type Hierarchy
Show In

Cut
Copy
Paste

— /lt
* Answer the "count" field in the BaseScanner class.
»
* @return Field.
»
»
*/
e protected static Field getCountFiel(
try {
Class<?> domScannerClass =
Class<?> baseScanner(lass =
Field field = baseScannerCly
field.setAccessible(true);
return field;
catch (NoSuchFieldException ex)
//should not happen since I
AnalysisErrorManager. stop("
return null;
}
}
< »

Surround With
Local History

Search

Find Bugs
Run As

Debug As
Team
Compare With
Replace With

Preferences...

Ugly construction, but the class and field are not directly accessible.

#Z

F3

F4

~“XH

#0

*T

NEW >

3#X
#C
#V

\¥#Z

VVVVVYVY V VVA

2 Remove from Context 4\l

is declared in class BaseScanner hardcoded above.
tting an inherited private field \"count\", but it

L Details] £ SVN Historﬂ € Progress}
|

Field be.imec.cleanc.cparser.kernel.ImecDOMScanner.get Source L3S >
Refactor T Rename... 3R

Move... 3V
Change Method Signature... X 3C
Inline... a8l

Extract Interface...

Extract Superclass...

Use Supertype Where Possible...
Pull Up...

Push Down...

Introduce Indirection...
Introduce Parameter Object...

Generalize Declared Type...

| Writable T Smart Insert [37 4T [[g

41

When to Refacctor ?

* When you add functionality
— Helps you to understand the code you are modifying.

— Sometimes the existing design does not allow you to easily
add the feature.

» When you need to fix a bug

— If you get a bug report, it's a sign the code needs
refactoring

— because the code was not clear enough for you to see the
bug in the first place

* When you do a code review

— Code reviews help spread knowledge through the
development team.

— Works best with small review groups

IMEC o | 42

Friday 16 November 12

When to Refactor

* You should refactor:
- Any time that you see a better way of doing things

e "Better” means making the code easier to understand and to modify in the
future

— You can do so without breaking the code

e Unit tests are essential for this (remember: do not refactor in isolation)
* You should NOT refactor:
— Stable code (code that won't ever need to change, code library)
— Someone else’s code

e Unless you've inherited it (and Now it’s yours) «u— 2 X P Practice!
e Rule of Thumb: ‘Three strikes and you refactor’

— 1st time: Write from scratch
— 2nd time: Duplication eventually admissible
— 3rd time: Refactor !!!

lr71(3<: o | 43

Friday 16 November 12

Example: Switch Statements

» Switch statements are very rare in properly designed
object-oriented code

— Therefore, a switch statement is a simple and easily
detected “bad smell”

— Of course, not all uses of switch are bad

— A switch statement should NOT be used to distinguish
between various kinds of object

» There are several well-defined refactorings for this
case

— The simplest is the creation of subclasses

. Nuyts Roel
imec e

Friday 16 November 12

Example: Bad Smell

class Animal {
final int MAMMAL = O, BIRD = 1, REPTILE = 2;
int myKind; // set in constructor

String getSkin() {
switch (myKind) {
case MAMMAL: return "hair";
case BIRD: return "feathers";
case REPTILE: return "scales";
default: return "integument”;

Friday 16 November 12

Example: Improved

class Animal {
String getSkin() {

return "integument”;

}

class Mammal extends Animal {
String getSkin() {

return "hair"; }

}

class Bird extends Animal {
String getSkin() {

return "feathers";

}

class Reptile extends Animal {
String getSkin() {

return "scales";

Friday 16 November 12

JUnit Tests

* As we refactor, we need to run (JUnit) tests to ensure that we
haven't introduced errors

public void testGetSkin() {
assertEquals("hair", myMammal.getSkin());
assertEquals("feathers"”, myBird.getSkin());
assertEquals("scales”, myReptile.getSkin());
assertEquals("integument”, myAnimal.getSkin());

» This should work equally well with either implementation

» The setUp() method of the test fixture may need to be
modified

e Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

'lmec ~ Wuyts Roel

ricted 2007
A

Friday 16 November 12

Refactoring Examples

Add Parameter

Change Association
Change Reference to Value
Change Value to Reference
Collapse Hierarchy
Consolidate Conditional
Convert Procedures to Objects
Decompose Conditional
Encapsulate Collection
Encapsulate Downcast
Encapsulate Field

Extract Class

Extract Interface

Extract Method

Extract Subclass

Extract Superclass

Form Template Method
Hide Delegate

Hide Method

Inline Class

Inline Temp

Introduce Assertion
Introduce Explain Variable
Introduce Foreign Method

‘ 72 Refactorings identified by Fowler

Tilcle

Friday 16 November 12

I Wuyts Roel
restricted 2007

48

Refactoring Example: Collapse Hierarchy

» When superclass and subclass are not very different:
Merge them

Employece

A é Employee

i(mec 2007

Friday 16 November 12

Refactoring Example: Consolidate Conditional

-

* When the same fragment of code is in all branches:

Move it out
double disabilityAmount() double disabilityAmount()
{ {
if (_seniority < 2) return O; © if (isNotEligableForDisability())
if (_monthsDisabled > 12) ‘ re
r // compute the disability amount
if (isPartTime) return }

// compute the disability amount

- Vl ts Roel
(MmccC ted 2007

50

Friday 16 November 12

Refactoring Example: Decompose Conditional

» When having a complicated conditional statement:
Extract if/then/else parts

if (date.before (SUMMER_START) || date.after(SUMMER_END))
charge = quantity * _winterRate + _winterServiceCharge;

else

charge = quantity * _summerRate;

¢

if (notSummer(date))
charge = winterCharge (quantity);

else charge = summerCharge (quantity);

lmec icea 2007 | S|

Friday 16 November 12

Refactoring Example: Encapsulate Collection

 When a method returns a collection: Provide Read-
only view & add/remove methods

Person Person
getCourses():Set s (L Unmodfiable)Set

(setCourses(:Set)

remove Course(: Course] >
S~~——

'l mece “.' L e

52

Friday 16 November 12

Refactoring Example: Extract Class

» When we have 1 class doing the work that should be
done by 2: Create new class, move fields & methods

- => GRASP High Cohesion

Person
Person Telephone Numbe|

fame office Telephone
((icefreaCode name % ﬁ[len?it:de ;
CLoffceNurmber 1

etTelephoneNurmber
(16t elephaneNutmer Sl getTelephoneNurmber
.l mecc ?;I?)%(a; 53

Friday 16 November 12

Refactoring Example: Inline Class

» When a class isn't doing very much: Merge with

other class

Telephone Number

Friday 16 November 12

areaCode
N

getTelephoneNumber

Person
ofice Telephone
name S
; C
getTelephoneNurmber
(ylcle

=

Person

narme

areaCode
NUrTOer

getTelephoneNurmber

Roel
007

54

Refactoring Example: Encapsulate Downcast

» When a method returns an object that needs to be
downcasted by its callers:

— Move the downcast to within the method.

— happens often when a class uses a collection or iterator

Object lastReading() { Reading lastReading() {

return readings.lastElement(); return (Reading) readings.lastElement();
| ‘ |
Reading Reading = Reading lastReading = theSite.lastReading();

@ eadlng) theSite.lastReading();

[3
uyts Roel
ted 2007 55

Friday 16 November 12

Refactoring Example 9: Extract Method

» When we have a code fragment that can be grouped
together: turn the fragment into a method with an

explanative name

void printOwing()
{

printBanner(); void printOwing() {

/] print details printBanner();

System.out.println ("name: " + _name); printDetails(getOutstanding());

}

System.out.println ("amount” +

getOutstanding());

Wuyts Roel 56

imec 'c‘te.d 2007

Friday 16 November 12

Bad Smells in Code

» Duplicated Code o Parallel Inheritance/Interface

 Long Method Hierarchies

» Large Class * Lazy Class

- Long Parameter List * Speculative Generality

 Divergent Change Temporary Field
» Message Chains
* Middle Man

e Inappropriate Intimacy

e Shotgun Surgery
* Feature Envy

o Data Clumps
* Incomplete Library Class

o Data Class
» Refused Bequest

e Alternative Classes with Different
Interfaces

e Primitive Obsession
e Switch Statements
e Comments

: Wuyts Roel
imec B | -

Friday 16 November 12

Bad Smells

e Where did this term come from?

“If it stinks, change it.”
--Grandma Beck

» The basic idea is that there are things in code that cause
problems

— Duplicated code
— Long methods

* But any time you change working code, you run the risk of
breaking it

— A good test suite makes refactoring much easier and safer

 Bad smells gives inspiration, but are not designed as metrics
— You have to decide yourself when something is “too much?”, ...

IMeC icted 2007 | 58

Friday 16 November 12

Example: Duplicated Code

o If you see the same code structure in more than one
place, find a way to unify them

* “Number one in the stink parade” !!!

o The usual solution is to perform

- ExtractMethod: create a single method from the duplicated
code

— Invoke from all places: Use it wherever needed

- You sometimes need additional refactorings (Add Parameter,

)

e This adds the overhead of method calls, thus the code
could get a bit slower

) Wuyts Roel
g 59

imec

Friday 16 November 12

Other Bad Smells

* Long Method
— The longer a procedure is, the more difficult it is to understand.

— Solution: perform EXTRACT METHOD or Decompose Conditional or Replace
Temp with Query.

* Large class

— When a class is trying to do too much, it often shows up as too many instance
variables.

— Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS
* Long Parameter List

- In OO, you don't need to pass in everything the method needs.
Instead, you pass enough so the method can get to everything it
needs

— Solution: Use REPLACE PARAMETER WITH METHOD when you can get
the data in one parameter by making a request of an object you
already know about.

Tlcle S | 60

Friday 16 November 12

Other Bad Smells

e Shotgun Surgery

— This situation occurs when every time you make a kind of change, you have
to make a lot of little changes to a lot of different classes.

— Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole
bunch of behavior together.

* Feature Envy
— A method that seems more interested in a class other than the one it is in.

— Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and
get it home.

Tlcle R | 6l

Friday 16 November 12

Bad Smell/Sweet Smell: Comments

* Fowler says “"comments often are used as a deodorant”

- If you need a comment to explain what a block of code does, use Extract
Method

— If you need a comment to explain what a method does, use Rename Method

— If you need to describe the required state of the system, use Introduce
Assertion

» When you feel the need to write a comment, first try to refactor the code
so that any comment becomes superfluous

» The point is that code should be self-explanatory, so that comments are
not necessary

e This should not discourage the use of comments
(especially javadoc comments)

- A comment is a good place to say why you did something

ImecC icea 2007 | 62

Friday 16 November 12

Java FindBugs

1 Acwatorava £ =E)
laD
Sy < .
* The activator class controls the plug-in life cycle n
*/
public class Activator extends AbstractUIPlugin {
// The plug-in 1D
public static final String PLUGIN_ID = "CPP2MSE";
// The shared instance
private static Activator plugin;
- VAL
* The constructor
*/
= public Activator() {
}
*/
a = public void start(BundleContext context) throws Exception {
super.start(context);
.] plugin = this;|
}
- /0
* (non-Javadoc
* @see org.eclipse.ui.plugin.AbstractUIPlugin#stop(org.osgi. framework.BundleContext) \;‘
0/ -
o - nithlic wvnid stanfRundlalnantext coantext) throws Fycentinn £ Y
T ¥ DY
E_.: Problems (@ Javadoc (E% Declaration (E Console (47 Search (ﬁ Bug User Annotations (ﬁj Bug Details &3 E) SVN History] ¢ Progress] =08
High Priority Dodgy
In class be.imec.cpp2mse.ui.plugin.Activator -
In method be.imec.cpp2mse.ui.plugin.Activator.start(BundleContext)
Field be.imec.cpp2mse.ui.plugin.Activator.plugin 0
Write to static field from instance method
This instance method writes to a static field. This is tricky to get correct if multiple instances are being manipulated, and generally bad practice.
Writable Smartinsert | 31:23 | || 137mof 15am| |,

63

Friday 16 November 12

Practical information

* When you find you have to add a feature to a program, and the program'’s
code is not structured in a convenient way to add the feature, first refactor
the program to make it easy to add the feature, then add the feature

» Before you start refactoring, check that you have a solid suite of tests. These
tests must be self-checking.

» Make sure all tests are fully automatic and that they check their own results.

* Run your tests frequently. Localize tests whenever you compile—every test
at least every day.

o It is better to write and run incomplete tests than not to run complete tests

» Think of the boundary conditions under which things might go wrong and
concentrate your tests there

» Don’t forget to test that exceptions are raised when things are expected to
go wrong

* When you get a bug report, start by writing a unit test that exposes the bug.

» Refactoring changes the programs in small steps. If you make a mistake, it is
easy to find the bug.

- . Wuyts Roel 6 4
lm eC mec restricted 2007

Friday 16 November 12

Obstacles to Refactoring

* Performance issue
— “Refactoring will slow down the execution”
e Cultural Issues
- “We pay you to add new features, not to improve the code!”
o If it doesn’t break, do not fix it
- “We do not have a problem, this is our software!™
» Development is always under time pressure
— Refactoring takes time
— Refactoring better after delivery

— Process should take it into account, like testing

i(mec e

Friday 16 November 12

Conclusion

o Refactoring is just a way of rearranging code
— Refactorings are used to solve problems

— If there’s no problem, you shouldn’t refactor

» The notion of “bad smells” is a way of helping us recognize
when we have a problem

— Familiarity with bad smells helps us avoid them in the first place
o Refactorings are mostly pretty obvious

— Most of the value in discussing them is just to bring them into our
“conscious toolbox”

— Refactorings have names in order to crystalize the idea and help
us remember it

(meccC ctad 2007

66

Friday 16 November 12

Profiling

e What and how

Friday 16 November 12

Performance Myth

e Don’t think that clean software is slow!

* Normally only 10% of your system consumes 90% of
the resources so just focus on 10 %.

— Refactorings help to localise the part that need change

— Refactorings help to concentrate the optimisations

» Always use a profiler on your “slow” system to guide
your optimisation effort

— Never optimise first!

) Wuyts Roel
g 68

imec

Friday 16 November 12

Profiling

*» "Measure the behaviour of a program as it runs”
» Note: can profile different things
— execution speed

- memory usage

Tlcle

Friday 16 November 12

s Roel
2007

Profiling concepts

e How does it work?

— Sampling: gather information from time to time
e Less accurate

e Less performance overhead
— Code instrumentation: modify program to analyze itself
e Full instrumentation is very exact
e Slower
e Risc for Heisenbugs

e Can be manual, static, dynamic, ...

Tlcle e

70

Friday 16 November 12

Integrated Environments

e Should include profiler
- linked with code

— make profile data understandable and usable

Tlcle

Friday 16 November 12

R 6e|
007

71

Java Profiling in Eclipse

» Java profiling can be installed in Eclipse

— Does Memory and Execution Time profiling

e |ocal or remote

Tlcle

Friday 16 November 12

Roel
007

72

We have a Java project to profile...

& Java - CarModel. java - Eclipse SDK
Fla Edt Refactor Source Navigate Search Projact Run Window Help

S~ i B0 %" Q- BHFGCG- ™9 v < =5 (U Profilng and L... | & Java

* - e
r~ ‘

=0

IS Package Explerer o Hierarchy 4] CarModel.java 2
=[5 - W import java.io.BuffercdReader:;
import java.io.IO0Exceprion:

& Profilefroject
inport java.1o0.InputStreamReader;

= &= ProfiingDemo
= 45 (defauk package)
= |J CarModel. jave
Sl curioda public class <
- -
@ man(Strng())
Os'truaeCaUsagc(CarHod * Required car parts: 1 Engine, 4 wheels, and 2 doors
o engine public Engine engine = new Engine();
o left public Wheel([]) wheel = new Wheel(4):
o right public Door lerft = new Door (), right = new Door():
° wheel
& CarModel()
® @ Docr :
& QErom public CarModel ()
& @ wheel (
s Q\\'ndcw for(int 1 = 0; 1 < 4. 1++)

vhea!l 41 = new WUheal ()

+ B, RE System Library [re1.5.0_07)

Problems Javadoc Dedaamnm X% i 28~

terminated > CarModel [Java Appication] Java.exe (August 4, 2006 S:21:51 PM)
CarModel]l started
Menu:

(1) Simulate car usage
(2 Crearse wmrafarancrard nhlrarra

73

Friday 16 November 12

Profile the main function

el DR e

N~ Y

= Package Explorer X Herarchy — O

J] CarModsl.java o2

= ProfieProject
=& ProfiingDemo
=) (defauk package)
= 4 CarModel.java
= @, CarMode!

& main(String ISR

@ smulateCar
engne
left
right
o wheel
& CarModsl()
+ Q Door
@ Engne
#® @ wheel
+ Q Window
& B, IRE System Library [jre

o 0 ©

CarModel.main(Strir

3 —
e N

_: ,‘. — t‘: - .
Open F3
Open Type Hisrarchy F4
Open Call Hierarchy Cerl+Alt4+H
of Cut Cerl+X
Copy Cerl+C
41 Copy Qualified Name
7 Paste Curl+v
X Delete Delete
Buld Path
Source Ak4Shift4+S
Refactor AL+Shift+1
pxg Import...
1y Export...
References
Declarations
Toode Method Breakoont
Run As
Debug As

J3 1 Prfie onserver

Compare With
Replace With
Restore from Local History,..

import java.io.BufferedReader:

T Exception;
put StreamReader:

e 1

Rr parcs:
engine = new Engine{);

vheel = new Uheel[4]:;

ft = new Door{), right = new

1 Engine, 4 wheels,

n Lthl, £

=1()

0; 1 < 4; i++)

= now MNheal i)«

4

% %

» Console
ation] java.exe (August 4, 2006 5:21:51 PM)

»
»

Ak+5hift+P, R
P 17 2 Java Apglication

Y Ju 3 Unit Test

5] 4 SWT Appiication

Q- Profike....

74

Friday 16 November 12

View results in Profiling perspective

& Profiling and Logging - CarModel. java - Eclipse SDK

File Edit Refactor Source Mavigate Search Project Run ‘Window Help
g - ' F-0-Q- Q- b BB E 7| @ Profiing and L... | &’ Java
D i fF] i (a. : . @ -
7 Execution Statistics - CarModel at rwinbook [PID: 2808] (Filter: Mo filter)

L

v

2
;‘f‘)P

=Package Base Time {(sec... Average Base ... Cumulative Tim... Calls
e = i (default package) A 0.052681 0.000454 4, 0.052681 A4 116

|9 = @ [byte 0.000000 0.000000 0.000000
= B CarModel at rwinbo @ [char 0.000000 0.000000 0.000000
= . <terminated: f @ [int 0.000000 0.000000 0.000000
=59 Basic Memo @ [long 0.000000 0.000000 0.000000
& Execution T @ [short 0.000000 0.000000 0.000000
@y Method Cor © [Wheel 0.000000 0.000000 0.000000
@ byte 0.000000 0.000000 0.000000

[o © CarModel | [. 0.003300| %, R
@ char 0.000000 0.000000 0.000000

+ & Door ; 0.010020 0.000455 A 0.010044 4

+ (3 Engine y 0.001064 0.000076 A 0.001064 ‘A
@ int 0.000000 0.000000 0.000000
@ long 0.000000 0.000000 0.000000
@ short 0.000000 0.000000 0.000000

a s -—

oo O 000 00O

Friday 16 November 12

Other useful tools exist for profiling...

“Scalasca” : spot communication&synchronization
imbalances in MPI programs (http://scalasca.org)

e O O [X| Cu 4 QT: epi Isi sul des/su " z
File Display Topology Help
|Abso|ute ;] |Abso|ute ;I |Abso|ute ;[
Metric tree | Call tree I Flat view | System tree | Box Plot | Topology 0 |
;" Er PAF E | | & [- Linux Cluste =N

123.56 Time
2.01e6 Visits
=+ [] 0 Synchronizations
[o Point-to-point
7456 Collective
[J 0 Remote Memory Access
£+ [J 0 Communications
[J 0 Point-to-point
[1.89e5 Sends
[1.89e5 Receives
[o Collective
8.79e4 Exchange
[0 As source
[J 0 As destination
[J 0 Remote Memory Access
2.05e4 Puts
2.05e4 Gets
B+ [J 0 Bytes transferred
£+ [0 Point-to-point
[d 2.08e8 Sent
[d 2.08e8 Received
&+ [0 Collective
2.18e7 Outgoing
2.18e7 Incoming
[J 0 Remote Memory Access
B [J 0.00 Computational imbalance
&+ [1.36 Ove

d 1.36 Underload

0.00 1.36 (50.00%)

Selected "Point-to-point"

(mec

Friday 16 November 12

&+ [0.00 MPI_Init

— [0.00 MPI_Comm_rank
—[J 0.00 MPI_Comm_size
—[J 0.00 MPI_Barrier

—[J 0.00 MPI_Win_create
— [0.00 MPI_Win_lock
—[J 0.00 MPI_Win_unlock
— [J 0.00 MPI_Initialized
—[J 0.00 MPI_Comm_group
—[J 0.00 MPI_Comm_create
— [J 0.00 MPI_Finalized
—[J 0.00 MPI_Group_free
— [0.00 MPI_Accumulate
— [0.00 MPI_Isend

—[J 0.00 MPI_Irecv

— [J 0.00 MPI_Waitall

— [J 0.00 MPI_Allreduce

— [J 0.00 MPI_Win_free
—[J 0.00 MPI_Get

—[J 0.00 MPI_Comm_free
B+ [J 0.00 MPI_Finalize

L

& [J 0.00 ly-1-00
5 [J 0.00 ly-1-01
& [J 0.00 ly-1-02
[J0.00 ly-1-03
[J0.00 ly-1-04
[J 0.00 ly-1-05
[0.69 ly-1-06
[J0.00 ly-1-07
[0.67 ly-1-08
[J 0.00 ly-1-09
[J0.00 ly-1-10
[J0.00 ly-1-11
[J0.00 ly-1-12
[J0.00 ly-1-13
[Jo0.00 ly-1-14
[0.00 ly-1-15
[0.00 ly-2-00
[0.00 ly-2-01
[0.00 ly-2-02
[0.00 ly-2-03
[0 0.00 ly-2-04
[J 0.00 ly-2-05
[0.00 ly-2-06
[0.00 ly-2-07
[0.00 ly-2-08
[0.00 ly-2-09
[0.00 ly-2-10

= [0 0.00 ly-2-11
_'l_ll_d e

Wuyts Roel | 76

astricted 2007

http://scalasca.org
http://scalasca.org

Other useful tools exist for profiling...

“Sniper” : fast hardware simulator for detailed analysis
(http://snipersim.org)

' @ imbalance-end
imbalance-start

[C) sync-unscheduled

(@ sync-futex

) mem-dram

@ mem-remote

B mem-13

B mem-12

| @ mem-1d

@ ifetch

@ serial

@ branch

@ issue-port015

@ issue-port5

@ issue-port34

[Jissue-port2

B issue-port1

@ issue-portd

() depend-branch

@ depend-fp

8 depend-int

@ dispatch_width

- Wuyts Roel
‘mec ~ ©imec restricl;ZdSZO%e7 77

Friday 16 November 12

http://snipersim.org
http://snipersim.org

Conclusion

» Make it Work, Make it Right, Make it Fast
» Unit testing remove fear of making changes
» Refactoring remove fear of making changes

» Profiling tells you where to make performance-
related changes

— focus your effort

ImecC iciea 2007 | 78

Friday 16 November 12

