
Ontwerp van SoftwareSystemen

5 Unit Testing, Refactoring and
Profiling

Roel Wuyts
OSS 2012-2013

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

A golden rule...

• Make it Work

• Make it Right

• Make it Fast

2

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

How does this work?

• First make sure the software does what you want

– use unit tests

• Then rework the code until it speaks for itself

– use refactorings

• Then optimize the performance, if needed

– use profiling

3

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Testing

Unit Testing test individual components

Module Testing test a collection of related components

Sub-System Testing test sub-system interface mismatches

System Testing
• test interactions between sub-systems
• tests that the complete system fulfils

requirements

Acceptance Testing test system with real rather than simulated data

4

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Unit Testing

• How can I trust that changes did not destroy
something?

• What is my confidence in the system ?

• How do I write tests?

• What is unit testing?

5

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Tests

• Tests represent your trust in the system

• Build them incrementally

– Do not need to focus on everything

– When a new bug shows up: write a test

• Even better: test first!

– Act as your first client

– Helps finding proper interfaces

• Tests are active documentation: they are always in
sync

6

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Testing Style

• “The style here is to write a few lines of code, then a
test that should run, or even better, to write a test
that won't run, then write the code that will make it
run.”

– write unit tests that thoroughly test a single class

– write tests as you develop (even before you
implement)

– write tests for every new piece of functionality

• “Developers should spend 25-50% of their time
developing tests.”

7

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

But I can’t cover anything!

• Sure! Nobody can but:

– When someone discovers a defect in your code, first
write a test that demonstrates the defect.

– Then debug until the test succeeds.

8

“Whenever you are tempted to type something
into a print statement or a debugger expression,
write it as a test instead.”

 Martin Fowler

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Unit Testing

• Ensure that you get the specified behaviour of the
public interface of a class

– Normally tests a single class

• General setup of a test:

– Create a context,

– Send a stimulus,

– Check the results

9

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Example

public class SaleTest extends TestCase
{
 // …
 public void testMakeLineItem() {
 Sale fixture = new Sale();
 Money total = new Money(7.5);
 Money price = new Money(2.5);
 ItemID id = new ItemID(1);
 ProductDescription desc = new ProductDescription(id, price, “product 1”);

 sale.makeLineItem(desc, 1);
 sale.makeLineItem(desc, 2);

 assertTrue(sale.getTotal().equals(total));
}

10

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

About Failures and Errors

• A failure is a failed assertion

– i.e., an anticipated problem that you test.

• assertEquals(2, myContainer.nrOfElements())

• An error is a condition you didn’t check for.

– e.g. an exception being thrown you did expect

11

	 	 boolean isExceptionThrown = false;
	 	 try {
	 	 	 myContainer.get(3);
	 	 } catch(IndexOutOfBoundsException e) {
	 	 	 isExceptionThrown = true;
	 	 }
	 	 assertTrue(isExceptionThrown);

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Good Unit Tests

• Are repeatable

– have to be deterministic to be useful

• Require no human intervention

– so that they can be automated

• Are “self-described” and tell a story

– to serve as documentation

• Change less often than the system

– they encode stable functionality

12

Friday 16 November 12

Wuyts Roel
 imec restricted 2007 13

• Build simple tests

• Check that failures are caught

• Run tests frequently (every couple of minutes)

• Test Infrastructure code first, then application-
specific code

• Reuse as much test code as you can (tests are code!)

• Write small tests that test one particular aspect

• Make sure the tests are deterministic

Designing tests

Friday 16 November 12

Wuyts Roel
 imec restricted 2007 14

• Find problems soon.

– in context of what you were doing!

• Serve as documentation.

• Ease maintenance and evolution.

– new developers jump in anytime..

• Have something to show all the time.

Why spending time testing?

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Testing Frameworks

• Tests have to be repeatable

• Unit Testing Frameworks implement necessary
infrastructure so that you can set up your tests, run
them frequently, and see the results

• SUnit is “the mother of all unit test frameworks”

– started in Smalltalk

– fanned out to all kinds of other languages

• JUnit, NUnit, CppUnit, ...

15

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

JUnit overview

• Junit (inspired by Sunit) is a simple “testing
framework” that provides:

– classes for writing Test Cases and Test Suites

– methods for setting up and cleaning up test data
(“fixtures”)

– methods for making assertions

– textual and graphical tools for running tests

16

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Testing Frameworks

• Key parts

– TestCase: bundles test methods

– Some mechanism to execute test code

 (methods, macroes, ...)

– Fixture (≈ Resource): known set of objects that serves
as a base for a set of test cases

– TestSuite: bundles testcases so that they can be run
together

– TestRunner: runs a testsuite, outputting results

17

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

A testing scenario

18

• The framework calls the test methods that you define
for your test cases

– You need to declare a TestRunner

– You specify who will gather the results

– You add the needed tests to the runner

– You run the TestRunner

• this automatically runs all tests, collecting the results

– You pass the results to an Outputter

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

JUnit Framework

19

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

A testing scenario

20

• The framework calls the test methods that you define
for your test cases

S.Ducasse LSE

A Testing Scenario

The framework calls the test methods that you define for your test cases.

14
Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Setup and TearDown

• Executed before and after each test

– setUp allows us to specify and reuse the context

– tearDown makes us clean-up afterwards

21
S.Ducasse LSE

setUp and TearDown
• Executed before and after each test

• setUp allows us to specify and reuse the context

• tearDown to clean after.

18Friday 16 November 12

Wuyts Roel
 imec restricted 2007

• Example unit test for an online ordering system

22

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Mocking & Stubbing

• Example unit test for an online ordering system
public class OrderStateTester extends TestCase {

 private static String TALISKER = "Talisker";
 private static String HIGHLAND_PARK = "Highland Park";
 private Warehouse warehouse = new WarehouseImpl();

 protected void setUp() throws Exception {
 warehouse.add(TALISKER, 50);
 warehouse.add(HIGHLAND_PARK, 25);
 }
 public void testOrderIsFilledIfEnoughInWarehouse() {
 Order order = new Order(TALISKER, 50);
 order.fill(warehouse);
 assertTrue(order.isFilled());
 assertEquals(0, warehouse.getInventory(TALISKER));
 }
 public void testOrderDoesNotRemoveIfNotEnough() {
 Order order = new Order(TALISKER, 51);
 order.fill(warehouse);
 assertFalse(order.isFilled());
 assertEquals(50, warehouse.getInventory(TALISKER));
 }

23

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Mocking & Stubbing

• Example unit test for an online ordering system
public class OrderStateTester extends TestCase {

 private static String TALISKER = "Talisker";
 private static String HIGHLAND_PARK = "Highland Park";
 private Warehouse warehouse = new WarehouseImpl();

 protected void setUp() throws Exception {
 warehouse.add(TALISKER, 50);
 warehouse.add(HIGHLAND_PARK, 25);
 }
 public void testOrderIsFilledIfEnoughInWarehouse() {
 Order order = new Order(TALISKER, 50);
 order.fill(warehouse);
 assertTrue(order.isFilled());
 assertEquals(0, warehouse.getInventory(TALISKER));
 }
 public void testOrderDoesNotRemoveIfNotEnough() {
 Order order = new Order(TALISKER, 51);
 order.fill(warehouse);
 assertFalse(order.isFilled());
 assertEquals(50, warehouse.getInventory(TALISKER));
 }

24

tested object
“system under test”

collaborator

state
verification

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Mocking & Stubbing

• Using mocking (jMock library example)
public class OrderInteractionTester extends MockObjectTestCase {

 private static String TALISKER = "Talisker";

 public void testFillingRemovesInventoryIfInStock() {
 Order order = new Order(TALISKER, 50);
 Mock warehouseMock = new Mock(Warehouse.class);

 warehouseMock.expects(once()).method("hasInventory")
 .with(eq(TALISKER),eq(50))
 .will(returnValue(true));
 warehouseMock.expects(once()).method("remove")
 .with(eq(TALISKER), eq(50))
 .after("hasInventory");

 order.fill((Warehouse) warehouseMock.proxy());

 warehouseMock.verify();
 assertTrue(order.isFilled());
 }

}

25

setup - expectations

setup - data

exercise
verify

More info: http://martinfowler.com/articles/mocksArentStubs.html

Friday 16 November 12

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

Wuyts Roel
 imec restricted 2007

Refactorings

• Refactoring

– What is it?

– Why is it necessary?

– Examples

– Tool support

– Obstacles to refactoring

26

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

What is Refactoring?

• The process of changing a software system in such a
way that it does not alter the external behaviour of
the code, yet improves its internal structure
[Fowl99a]

• A behaviour-preserving source-to-source program
transformation [Robe98a]

• A change to the system that leaves its behaviour
unchanged, but enhances some non-functional
quality - simplicity, flexibility, understandability, ...
[Beck99a]

27

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Typical Refactorings

Class
Refactorings Method Refactorings

Attribute
Refactorings

add (sub)class to
hierarchy add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to component abstract variable

extract code in new method

28

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Why Refactoring?

• “Grow, don’t build software” (Fred Brooks)

• “Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.” (Fowler)

• Some argue that good design does not lead to code
needing refactoring ...

29

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Why Refactoring?

• In reality

– Extremely difficult to get the design right the first time

– You cannot fully understand the problem domain

– You cannot fully understand user requirements

– You cannot really plan how the system will evolve

– Original design is often inadequate

– System becomes brittle, difficult to change

30

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Why Refactoring?

• Refactoring helps you to

– Manipulate code in a safe environment

• Behaviour preserving

– Recreate a situation where evolution is possible

– Understand existing code

• Remember: software needs to be maintained

– This is one way to do it safely

31

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Examples of Refactoring Analysis

• Rename Method

– existence of similar methods

– references of method definitions

– references of calls

• AddClass

– simple

– namespace use and static references between class
structure

32

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Rename Method

33

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Rename Method: Do It Yourself

• Check if a method does not exist in the class and
superclass/subclasses with the same “name”

• Browse all the implementers (method definitions)

• Browse all the senders (method invocations)

• Edit and rename all implementers

• Edit and rename all senders

• Remove all implementers

• Test

34

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Rename Method

• Rename Method (method, new name)
• Preconditions

– no method exists with the signature implied by new name in the
inheritance hierarchy that contains method

– [Smalltalk] no methods with same signature as method outside
the inheritance hierarchy of method

– [Java] method is not a constructor

• PostConditions
– method has new name

– relevant methods in the inheritance hierarchy have new name

– invocations of changed method are updated to new name

• Other Considerations
– Typed/Dynamically Typed Languages => Scope of the renaming

35

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Add class

36

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Add Class

• Preconditions
– no class and global variable exists with classname in the same

scope
– subclasses are all subclasses of all superclasses
– [Smalltalk] superclasses must contain one class
– [Smalltalk] superclasses and subclasses cannot be metaclasses

• Postconditions
– new class is added into the hierarchy with superclasses as

superclasses and subclasses as subclasses
– new class has name classname
– subclasses inherit from new class and not anymore from

superclasses

• Considerations: Abstractness

37

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Tool Support

• Could do refactoring by hand

– see Rename Method example

• But much better if automated

– easier

– safer

• Which tools are needed to support refactoring?

38

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Tool support for refactoring activities

Change Efficiently Failure Proof

Refactoring Tools
- source-to-source program
transformation
- behaviour preserving
 ⇒ Improve Structure

Regression Testing
- Repeating past tests
- requires no user interaction
- is deterministic
 ⇒ Verify damage to previous work

Development Environment
- Fast edit-compile-run
- Integrated in environment
 ⇒ Convenient

Configuration&Version Management
- track different versions
- track who did what
 ⇒ can revert to earlier versions

39

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Note: Do not apply refactoring tools in isolation!

Conclusion: Tool Support

40

Smalltalk C++ Java

refactoring tools ++ - (?) +

rapid edit-compile-run cycles ++ - +-

reverse engineering facilities +- +- +-

regression testing + + +

version & configuration
management

+ + +

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring in Eclipse

41

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

When to Refacctor ?

• When you add functionality
– Helps you to understand the code you are modifying.
– Sometimes the existing design does not allow you to easily

add the feature.

• When you need to fix a bug
– If you get a bug report, it’s a sign the code needs

refactoring
– because the code was not clear enough for you to see the

bug in the first place

• When you do a code review
– Code reviews help spread knowledge through the

development team.
– Works best with small review groups

42

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

When to Refactor

• You should refactor:
– Any time that you see a better way of doing things

• “Better” means making the code easier to understand and to modify in the
future

– You can do so without breaking the code
• Unit tests are essential for this (remember: do not refactor in isolation)

• You should NOT refactor:
– Stable code (code that won’t ever need to change, code library)

– Someone else’s code
• Unless you’ve inherited it (and now it’s yours)

• Rule of Thumb: ‘Three strikes and you refactor’
– 1st time: Write from scratch

– 2nd time: Duplication eventually admissible

– 3rd time: Refactor !!!

43

 ≉ XP practice!

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Example: Switch Statements

• Switch statements are very rare in properly designed
object-oriented code

– Therefore, a switch statement is a simple and easily
detected “bad smell”

– Of course, not all uses of switch are bad

– A switch statement should NOT be used to distinguish
between various kinds of object

• There are several well-defined refactorings for this
case

– The simplest is the creation of subclasses

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Example: Bad Smell

class Animal {
 final int MAMMAL = 0, BIRD = 1, REPTILE = 2;
 int myKind; // set in constructor
 ...

 String getSkin() {
 switch (myKind) {
 case MAMMAL: return "hair";
 case BIRD: return "feathers";
 case REPTILE: return "scales";
 default: return "integument";
 }
 }
}

45

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Example: Improved

class Animal {

 String getSkin() {

 return "integument";

 }
}

class Mammal extends Animal {

 String getSkin() {

 return "hair"; }

 }

class Bird extends Animal {

 String getSkin() {

 return "feathers";

 }
}

class Reptile extends Animal {

 String getSkin() {

 return "scales";

 }
}

46

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

JUnit Tests

• As we refactor, we need to run (JUnit) tests to ensure that we
haven’t introduced errors

• This should work equally well with either implementation

• The setUp() method of the test fixture may need to be
modified

• Re-running unit tests proves that the refactoring succeeded
(= external behavior remained unchanged)

public void testGetSkin() {

 assertEquals("hair", myMammal.getSkin());

 assertEquals("feathers", myBird.getSkin());

 assertEquals("scales", myReptile.getSkin());

 assertEquals("integument", myAnimal.getSkin());
}

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Examples

• Add Parameter
• Change Association
• Change Reference to Value
• Change Value to Reference
• Collapse Hierarchy
• Consolidate Conditional
• Convert Procedures to Objects
• Decompose Conditional
• Encapsulate Collection
• Encapsulate Downcast
• Encapsulate Field
• Extract Class

• Extract Interface
• Extract Method
• Extract Subclass
• Extract Superclass
• Form Template Method
• Hide Delegate
• Hide Method
• Inline Class
• Inline Temp
• Introduce Assertion
• Introduce Explain Variable
• Introduce Foreign Method
• …

48

72 Refactorings identified by Fowler

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Collapse Hierarchy

• When superclass and subclass are not very different:
Merge them

49

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Consolidate Conditional

• When the same fragment of code is in all branches:
Move it out

50

double disabilityAmount()

 {

 if (_seniority < 2) return 0;

 if (_monthsDisabled > 12)

 return 0;

 if (_isPartTime) return 0;

 // compute the disability amount

}

double disabilityAmount()

 {

 if (isNotEligableForDisability())

 return 0;

 // compute the disability amount

 }

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Decompose Conditional

• When having a complicated conditional statement:
Extract if/then/else parts

51

if (date.before (SUMMER_START) || date.after(SUMMER_END))

 charge = quantity * _winterRate + _winterServiceCharge;

else

 charge = quantity * _summerRate;

if (notSummer(date))

 charge = winterCharge (quantity);

else charge = summerCharge (quantity);

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Encapsulate Collection

• When a method returns a collection: Provide Read-
only view & add/remove methods

52

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Extract Class

• When we have 1 class doing the work that should be
done by 2: Create new class, move fields & methods

– => GRASP High Cohesion

53

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Inline Class

• When a class isn't doing very much: Merge with
other class

54

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example: Encapsulate Downcast

• When a method returns an object that needs to be
downcasted by its callers:

– Move the downcast to within the method.

– happens often when a class uses a collection or iterator

55

Object lastReading() {

 return readings.lastElement();

}

Reading lastReading =
 (Reading) theSite.lastReading();

Reading lastReading() {

 return (Reading) readings.lastElement();

}

Reading lastReading = theSite.lastReading();

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Refactoring Example 9: Extract Method

• When we have a code fragment that can be grouped
together: turn the fragment into a method with an
explanative name

56

void printOwing()

{

 printBanner();

 // print details

 System.out.println ("name: " + _name);

 System.out.println ("amount“ +

 getOutstanding());

}

void printOwing() {

 printBanner();

 printDetails(getOutstanding());
}

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Bad Smells in Code

• Duplicated Code
• Long Method
• Large Class
• Long Parameter List
• Divergent Change
• Shotgun Surgery
• Feature Envy
• Data Clumps
• Primitive Obsession
• Switch Statements
• Comments

• Parallel Inheritance/Interface
Hierarchies

• Lazy Class
• Speculative Generality
• Temporary Field
• Message Chains
• Middle Man
• Inappropriate Intimacy
• Incomplete Library Class
• Data Class
• Refused Bequest
• Alternative Classes with Different

Interfaces

57

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Bad Smells

• Where did this term come from?
 “If it stinks, change it.”
 --Grandma Beck

• The basic idea is that there are things in code that cause
problems
– Duplicated code

– Long methods

– …

• But any time you change working code, you run the risk of
breaking it
– A good test suite makes refactoring much easier and safer

• Bad smells gives inspiration, but are not designed as metrics
– You have to decide yourself when something is “too much”, …

58

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Example: Duplicated Code

• If you see the same code structure in more than one
place, find a way to unify them

• “Number one in the stink parade” !!!

• The usual solution is to perform

– ExtractMethod: create a single method from the duplicated
code

– Invoke from all places: Use it wherever needed

– You sometimes need additional refactorings (Add Parameter,
…)

• This adds the overhead of method calls, thus the code
could get a bit slower

59

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Other Bad Smells

• Long Method

– The longer a procedure is, the more difficult it is to understand.

– Solution: perform EXTRACT METHOD or Decompose Conditional or Replace
Temp with Query.

• Large class

– When a class is trying to do too much, it often shows up as too many instance
variables.

– Solution: perform EXTRACT CLASS or EXTRACT SUBCLASS

• Long Parameter List

– In OO, you don't need to pass in everything the method needs.
Instead, you pass enough so the method can get to everything it
needs

– Solution: Use REPLACE PARAMETER WITH METHOD when you can get
the data in one parameter by making a request of an object you
already know about.

60

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Other Bad Smells

• Shotgun Surgery

– This situation occurs when every time you make a kind of change, you have
to make a lot of little changes to a lot of different classes.

– Solution: perform MOVE METHOD/FIELD or INLINE CLASS bring a whole
bunch of behavior together.

• Feature Envy

– A method that seems more interested in a class other than the one it is in.

– Solution: perform MOVE METHOD or EXTRACT METHOD on the jealous bit and
get it home.

61

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Bad Smell/Sweet Smell: Comments

• Fowler says “comments often are used as a deodorant”

– If you need a comment to explain what a block of code does, use Extract
Method

– If you need a comment to explain what a method does, use Rename Method

– If you need to describe the required state of the system, use Introduce
Assertion

• When you feel the need to write a comment, first try to refactor the code
so that any comment becomes superfluous

• The point is that code should be self-explanatory, so that comments are
not necessary

• This should not discourage the use of comments
(especially javadoc comments)

– A comment is a good place to say why you did something

62

Friday 16 November 12

Java FindBugs

63

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Practical information

• When you find you have to add a feature to a program, and the program’s
code is not structured in a convenient way to add the feature, first refactor
the program to make it easy to add the feature, then add the feature

• Before you start refactoring, check that you have a solid suite of tests. These
tests must be self-checking.

• Make sure all tests are fully automatic and that they check their own results.

• Run your tests frequently. Localize tests whenever you compile—every test
at least every day.

• It is better to write and run incomplete tests than not to run complete tests

• Think of the boundary conditions under which things might go wrong and
concentrate your tests there

• Don’t forget to test that exceptions are raised when things are expected to
go wrong

• When you get a bug report, start by writing a unit test that exposes the bug.

• Refactoring changes the programs in small steps. If you make a mistake, it is
easy to find the bug.

64

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Obstacles to Refactoring

• Performance issue

– “Refactoring will slow down the execution”

• Cultural Issues

– “We pay you to add new features, not to improve the code!”

• If it doesn’t break, do not fix it

– “We do not have a problem, this is our software!“

• Development is always under time pressure

– Refactoring takes time

– Refactoring better after delivery

– Process should take it into account, like testing

65

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Conclusion

• Refactoring is just a way of rearranging code

– Refactorings are used to solve problems

– If there’s no problem, you shouldn’t refactor

• The notion of “bad smells” is a way of helping us recognize
when we have a problem

– Familiarity with bad smells helps us avoid them in the first place

• Refactorings are mostly pretty obvious

– Most of the value in discussing them is just to bring them into our
“conscious toolbox”

– Refactorings have names in order to crystalize the idea and help
us remember it

66

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Profiling

• What and how

67

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Performance Myth

• Don’t think that clean software is slow!

• Normally only 10% of your system consumes 90% of
the resources so just focus on 10 %.

– Refactorings help to localise the part that need change

– Refactorings help to concentrate the optimisations

• Always use a profiler on your “slow” system to guide
your optimisation effort

– Never optimise first!

68

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Profiling

• “Measure the behaviour of a program as it runs”

• Note: can profile different things

– execution speed

– memory usage

– ...

69

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Profiling concepts

• How does it work?

– Sampling: gather information from time to time

• Less accurate

• Less performance overhead

– Code instrumentation: modify program to analyze itself

• Full instrumentation is very exact

• Slower

• Risc for Heisenbugs

• Can be manual, static, dynamic, ...

70

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Integrated Environments

• Should include profiler

– linked with code

– make profile data understandable and usable

71

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Java Profiling in Eclipse

• Java profiling can be installed in Eclipse

– Does Memory and Execution Time profiling

• local or remote

72

Friday 16 November 12

We have a Java project to profile...

73

Friday 16 November 12

Profile the main function

74

Friday 16 November 12

View results in Profiling perspective

75

Friday 16 November 12

Wuyts Roel
 imec restricted 2007

Other useful tools exist for profiling...

76

“Scalasca” : spot communication&synchronization
imbalances in MPI programs (http://scalasca.org)

Friday 16 November 12

http://scalasca.org
http://scalasca.org

Wuyts Roel
 imec restricted 2007

Other useful tools exist for profiling...

77

“Sniper” : fast hardware simulator for detailed analysis
(http://snipersim.org)

Friday 16 November 12

http://snipersim.org
http://snipersim.org

Wuyts Roel
 imec restricted 2007

Conclusion

• Make it Work, Make it Right, Make it Fast

• Unit testing remove fear of making changes

• Refactoring remove fear of making changes

• Profiling tells you where to make performance-
related changes

– focus your effort

78

Friday 16 November 12

