
Ontwerp van SoftwareSystemen

6 Development Processes

Roel Wuyts
OSS 2012-2013

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Software Process

• Set of activities that leads to the production of a
software product

– lots of processes exist

– share some fundamental activities

2

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Development Phases

Testing Validate the solution against the requirements

Analysis Model and specify the requirements (“what”)

Maintenance Repair defects and adapt the solution to new
requirements

Implementation Construct a solution in software

Requirements
Collection

Establish customer’s needs

Design Model and specify a solution (“how”)

3

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Software Development Process

• A software development methodology is

• a set of partially ordered steps

• to build, deploy, maintain, … software

• Examples:

• Waterfall

• Spiral

• XP (eXtreme Programming)

• UP (Unified Process)

– RUP (Rational Unified Process)

– Agile UP

4

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Lightweight vs. Heavyweight Processes

Document driven
Elaborate workflow definitions

Many different roles
Many checkpoints

High management overhead
Highly bureaucratic

Focus on
• indiv./interactions rather than process/tools
• working SW rather than documentation
• customer collaboration rather than contract
• responding to change rather than the plan

Heavyweight
e.g., Waterfall model,

V-Process

Customizable
Framework
e.g., Rational

Unified
Process (RUP)

Agile (Lightweight)
e.g., eXtreme

Programming (XP),
SCRUM

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Lightweight vs. Heavyweight Processes

Document driven
Elaborate workflow definitions

Many different roles
Many checkpoints

High management overhead
Highly bureaucratic

Focus on
• indiv./interactions rather than process/tools
• working SW rather than documentation
• customer collaboration rather than contract
• responding to change rather than the plan

Heavyweight
e.g., Waterfall model,

V-Process

Customizable
Framework
e.g., Rational

Unified
Process (RUP)

Agile (Lightweight)
e.g., eXtreme

Programming (XP),
SCRUM

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Waterfall Model

• Characterized by
– Sequential steps (phases)

– Feedback loops (between two phases in
development)

– Documentation-driven

• Advantages
– Documentation

– Maintenance easier

• Disadvantages
– Complete and frozen specification document up-

front often not feasible in practice

– Customer involvement in the first phase only

– Sequential and complete execution of phases often
not desirable

– Process difficult to control

– The product becomes available very late in the
process

Thursday 22 November 12

V-Model

8

• Like the Waterfall model, it is a linear model
• Requirements are expected not to change
• Due to the V-shape, the first tests are the implementation tests
• Unlike the waterfall model, every integration is tested

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Lightweight vs. Heavyweight Processes

Document driven
Elaborate workflow definitions

Many different roles
Many checkpoints

High management overhead
Highly bureaucratic

Focus on
• indiv./interactions rather than process/tools
• working SW rather than documentation
• customer collaboration rather than contract
• responding to change rather than the plan

Heavyweight
e.g., Waterfall model,

V-Process

Customizable
Framework

e.g.,
Unified

Process (UP)

Agile (Lightweight)
e.g., eXtreme

Programming (XP),
SCRUM

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

UP: Iterative and Incremental development

• iterative & incremental development : embracing change

– Essential for SW Development

 (“No Silver Bullet”, Brooks, 1987)

• iterative models: can be iterative w.r.t. value and/or
requirements

10

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Iterative Development (a.k.a. incremental models)

• More functionality with each release (new increment)

– Operational quality portion of product within weeks

• Non-incremental models (e.g. Waterfall)

– Operational quality complete product at end

11

DeploymentTestCodingDesign

DeploymentTestCodingDesign

DeploymentTestCodingDesignR
equirem

ents

Release 1

Release 2

Release 3

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Incremental development (a.k.a. Evolutionary Models)

• New versions implement new and evolving requirements

12

Version 1

Version 2

Version 3

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

Requirements Design Coding Test Deployment

feedback

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

UP is Use-Case-Driven

• Use cases are concise, simple, and understandable by a wide range
of stakeholders

– End users, developers and acquirers understand functional requirements of the
system

• Use cases drive numerous activities in the process:

– Creation and validation of the design model

– Definition of test cases and procedures of the test model

– Planning of iterations

– Creation of user documentation

– System deployment

• Use cases help synchronize the content of different models

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

UP’s 4 Project Life Cycle Phases

• Inception
– Approximate vision

– Business case

– Scope

– Vague estimates

– Continue or stop?

• Elaboration
– Identification of most

requirements

– Iterative implementation of
the core architecture

– resolution of high risks

• Construction

– Iterative implementation of
lower risk elements

– Preparation for deployment

• Transition
– Beta tests

– Deployment

14

TransitionConstructionElaborationinception

time

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Iterations and Milestones

• each phase concludes with a well-defined milestone.

• phases consist of one or more iterations

– short fixed-length mini-projects (2 to 6 weeks)

– shift tasks to future iterations if necessary ...

– an iteration represents a complete development cycle

– outcome of each iteration: a tested, integrated and executable

15

Preliminary
Iteration

Iter. #1 Iter. #2

Inception Elaboration Construction Transition

Milestone Release Final production
release

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

The UP Disciplines

Project Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases
Process Disciplines

Iterations

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment

Configuration & Change Mgmt

Requirements

Elaboration TransitionInception Construction

Supporting Disciplines

Focus of this
course.

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

UP

• Advantages

– Incremental & Iterative

– Sits in between heavyweight and agile processes

• best of both worlds ?

– Customizable

• Potential pitfalls

– Use Cases do not model all requirements

– Hard to make really lightweight, even when customized

• Quite some documentation and process remains

17

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Lightweight vs. Heavyweight Processes

Document driven
Elaborate workflow definitions

Many different roles
Many checkpoints

High management overhead
Highly bureaucratic

Focus on
• indiv./interactions rather than process/tools
• working SW rather than documentation
• customer collaboration rather than contract
• responding to change rather than the plan

Heavyweight
e.g., Waterfall model,

V-Process

Customizable
Framework
e.g., Rational

Unified
Process (RUP)

Agile (Lightweight)
e.g., eXtreme

Programming (XP),
SCRUM

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Agile Development

• Group of iterative and incremental software
methodologies

19

The Agile Manifesto
We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007 20

Extreme Programming (XP)

• Point of XP: coping with change and uncertainty

• Based on number of practices:

– small, frequent releases of the system

– full-time engagement of customer

– pair programming, collective ownership of the code,
sustainable development

– regular system releases, test-first development,
continuous integration

– constant refactoring, simplest thing that can work

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

21

Driving Metaphor

• Driving a car is not about pointing the car in one
direction and holding to it; driving is about making
lots of little course corrections.

“Do the simplest thing that could possibly work”

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Customer-Developer Relationships

• A well-known experience: The customer and the
developer sit in a boat in the ocean and are afraid of
each other

• Result: a lot of energy goes into protective measures
and politics instead of success

22

Customer fears Developer fears
They won't get what they asked for They won't be given clear definitions

of what needs to be done

They must surrender the control of
their careers to techies who don't care

They will be given responsibility
without authority

They'll pay too much for too little They will be told to do things that
don't make sense

They won't know what is going on (the
plans they see will be fairy tales)

They'll have to sacrifice quality for
deadlines

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

The Customer Bill of Rights

You have the right to an overall plan
To steer a project, you need to know what

can be accomplished within time and budget

You have the right to get the most
possible value out of every

programming week

The most valuable things are worked on
first.

You have the right to see progress in
a running system.

Only a running system can give exact
information about project state

You have the right to change your
mind, to substitute functionality and

to change priorities without
exorbitant costs.

Market and business requirements change.
We have to allow change.

You have the right to be informed
about schedule changes, in time to
choose how to reduce the scope to

restore the original date.

XP works to be sure everyone knows just
what is really happening.

23

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

The Developer Bill of Rights

You have the right to know what is
needed, with clear declarations of

priority.

Tight communication with the
customer. Customer directs by value.

You have the right to produce quality
work all the time.

Unit Tests and Refactoring help to keep
the code clean

You have the right to ask for and
receive help from peers, managers, and

customers

No one can ever refuse help to a team
member

You have the right to make and update
your own estimates.

Programmers know best how long it is
going to take them

You have the right to accept your
responsibilities instead having them

assigned to you

We work most effectively when we
have accepted our responsibilities
instead of having them thrust upon us

24

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

• Customer makes business decisions

• Developers make technical decisions

• The Customer owns “what you get” while the
Developers own “what it costs”.

25

Separation of Roles

Business Decisions Technical Decisions

Scope Estimates

Dates of the releases Dates within an iteration

Priority Team velocity

 Warnings about technical risks

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Describing XP

Values Practices

Principles

26

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Basic XP Values

• Communication
– communicate problems&solutions, teamwork

• Simplicity
– eliminate wasted complexity

• Feedback
– change creates the need for feedback

• Courage
– effective action in the face of fear

• Respect
– care about you, the team, and the project

27

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Principles

• Humanity, Economics, Mutual Benefit, Self-Similarity,
Improvement, Diversity, Reflection, Flow,
Opportunity, Redudancy, Failure, Quality, Baby Steps,
Accepted Responsibility

• Will not detail them -- they govern what the practices
tend to accomplish

• So, on to the practices!

28

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Primary Practices

• Sit Together

• Whole Team

• Informative Workspace

• Energized Work

• Pair Programming

• Stories

• Weekly Cycle

• Quarterly Cycle

• Slack

• Ten Minute Build

• Continuous Integration

• Test-First Programming

• Incremental Design

29

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Stories

• plan using units of customer-visible functionality

30

Save with compression

Currently the compression
options are in a dialog
subsequent to the save
dialog. Make them part of
the save dialog itself

8 hrs
name

short description

estimate

index card

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Another example

31

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

7 more User Stories

• Students can purchase monthly parking passes
online.

• Parking passes can be paid via credit cards.

• Parking passes can be paid via PayPal ™.

• Professors can input student marks.

• Students can obtain their current seminar schedule.

• Students can only enroll in seminars for which they
have prerequisites.

• Transcripts will be available online via a standard
browser.

32

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Sit Together

• Develop in an open space big enough for the team

33

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Informative Workspace

• Workspace = about your work

– 15 seconds to convey how project is going

– shows important, active information

– drinks & snacks available, and clean

34

done this week this release

futureto be estimated

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Pair Programming

• Write all production programs with two people sitting
at one machine

– make enough room, move keyboard and mouse

• Pair programmers:

– keep each other on task

– brainstorm refinements to the system

– clarify ideas

– take initiative when partner is stuck (less frustration)

– hold each other accountable to practices

35

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Pair programming and privacy

• Sometimes you might need some privacy

– then go work alone

– come back with the idea (NOT the code)

• quickly reimplemented with two

• benefits the whole team, not you alone

36

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Pair Programming

• Rotate pairs frequently

– every couple of hours, at natural breaks in
development

– with a timer, every 60 minutes (or 30 minutes for
difficult problems)

37

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Pair Programming and Personal Space

• Not everybody likes to sit close!

• Observe personal hygiene and health

• Sexual feelings are not in best interest of the team

– even when mutual

• When uncomfortable pairing with somebody, talk
about it with someone safe

– chances are that you are not the only one

– everybody needs to feel comfortable

38

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Weekly Cycle

• Plan work one week at a time.

• Do this on a meeting at the begin of each week

1.Review progress.

2.Let customers pick a week’s worth of stories to
implement this week.

3.Break the stories into tasks. Team members sign up
for tasks and estimate them.

• Start writing tests that will run when the stories are
completed

39

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Ten-Minute Build

• Automatically build the whole system and run all of
the tests in ten minutes

– longer: will not be used (and errors result)

– shorter: not enough time to drink coffee

• Note: if it takes longer than 10 minutes:

– maybe only rebuild changed part or test changes

– But: introduces errors. Only do this when necessary

• Lowers stress: “Did we make a mistake? Let’s see.”

40

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Continuous Integration

• Team Programming = Divide, Conquer, Integrate

• Integrate and test changes after no more than a
couple of hours

– integration typically takes long

– when done at the end, risks the whole project when
integration problems are discovered

– the longer you wait, the more it costs and the more
unpredictable it becomes

41

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Using Continuous Integration

• Synchronous

– After a task is finished, you integrate and run the tests

– Immediate feedback for you and your partner

• Asynchronous

– After submitting changes, the build system notices
something new, builds and tests the system, and gives
feedback by mail, notification, etc.

– Feedback typically comes when a new task is started

– Pair programmers might have been switched already

42

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Test-first Programming

• Write a failing automated test before changing code

• Addresses many problems:

– Scope creep: focus coding by what the code should do,
not on the “just in case” code

– Coupling and cohesion: If it’s hard to write a test,
there is a design problem (not a testing problem)

– Trust: clean working code + automated tests

– Rhythm: gives focus on what to do next

• efficient rhythm: test, code, refactor, test, ...

43

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Incremental Design

• Invest in the design of the system every day. Strive
to the design of the system an excellent fit for the
needs of the system that day

– Completely opposite to lots of other practices

• Waterfall and similar approaches

• Can work with XP because of the other practices

– Automated tests, continuous integration, ...

• Note: you need to invest in design!

– not just implement story after story after story...

44

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Corollary Practices

• Real Customer
Involvement

• Incremental
Deployment

• Team Continuity

• Shrinking teams

• Root-Cause Analysis

• Shared Code

• Code and Tests

• Single Code Base

• Daily Deployment

• Negotiated Scope
Contract

• Pay-Per-Use

45

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Stages in XP Project

46

• Initiation

– User Stories

• Release Planning

• Release (each Release is typically 1 -6 months)

– Iteration 1 (typically 1 -3 weeks)

– Iteration 2

:

– Iteration n

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

XP

• Advantages

– works well for small teams

– low process overhead, lean & mean

• Potential pitfalls

– no documented compromises of user conflicts

– lack of an overall design specification or document

– can be hard to fit in organizations/workflows

47

Thursday 22 November 12

Wuyts Roel
 imec restricted 2007

Conclusion

• A software development methodology is

• a set of partially ordered steps

• to build, deploy, maintain, … software

• Many methodologies exist

– each with trade-offs

– pick the one according to your needs

• project size

• project partners

• development team(s)

• outside constraints (legislation, domain constraints, ...)

48

Thursday 22 November 12

