Ontwerp van SoftwareSystemen

6 Development Processes /

Thursday 22 November 12

Software Process

» Set of activities that leads to the production of a
software product

— lots of processes exist

— share some fundamental activities

i(mec 2007

Thursday 22 November 12

Development Phases

Thursday 22 November 12

Testing Validate the solution against the requirements
Analysis Model and specify the requirements (“what”)
Maintenance Repair defects and adapt the solution to new
requirements

Implementation Construct a solution in software
Requirements Establish customer’s needs
Collection
Design Model and specify a solution (“how”)

i(mec

2007

Software Development Process

» A software development methodology is
e a set of partially ordered steps

e to build, deploy, maintain, ... software

» Examples:
o Waterfall
e Spiral
e XP (eXtreme Programming)
e UP (Unified Process)
— RUP (Rational Unified Process)

— Agile UP

i(mec 2007

Thursday 22 November 12

Lightweight vs. Heavyweight Processes

Heavyweight Customizable Agile (Lightweight)
e.g., Waterfall model, Framework e.g., eXtreme
V-Process e.g., Rational Programming (XP),
- Unified - SCRUM
Process (RUP)
< >
Document driven Focus on
Elaborate workflow definitions * indiv./interactions rather than process/tools
Many different roles . working SWV rather than documentation
Many checkpoints * customer collaboration rather than contract
High management overhead . responding to change rather than the plan
Highly bureaucratic
. ~ Wuyts Roel
I(MmecC icted 2007

Thursday 22 November 12

Lightweight vs. Heavyweight Processes

Heavyweight Customizable Agile (Lightweight)
e.g., Waterfall model, Framework e.g., eXtreme
V-Process e.g., Rational Programming (XP),
' Unified ’ SCRUM
Process (RUP)
< >
Document driven Focus on
Elaborate workflow definitions * indiv./interactions rather than process/tools
Many different roles . working SWV rather than documentation
Many checkpoints * customer collaboration rather than contract
High management overhead . responding to change rather than the plan

Highly bureaucratic

: ~ Wuyts Roel
imec e

Thursday 22 November 12

Waterfall Model

e Characterized by

Sequential steps (phases)

Feedback loops (between two phases in
development)

Documentation-driven

» Advantages

Documentation

Maintenance easier

» Disadvantages

Complete and frozen specification document up-
front often not feasible in practice

Customer involvement in the first phase only

Sequential and complete execution of phases often
not desirable

Process difficult to control

The product becomes available very late in the
process

Tlcle

Thursday 22 November 12

Requirements | Changed Nl srie o oo o
phase ==l requirements | I
| ——————— -: I
Veri | Veri |
y ' L _e-nf! pp—— |
A l l
Y Y I
Specification :
hase
p P s cm e ——————— — —1 l
Verity : :
|
' [=)
Design : :
phase A R Sy -1
Verily : : :
I !
A\ | l |
Implementation : I :
phase —— : |
Test | : | :
\i I | I |
Ll
Integration Lyl
phase R
)l
Test LacE]D
AN B B
\d | B0 bl 9 |
Maintenance
— Development phase
- ——» Maintenance |
Retirement
Roel
007

\VV-Model

Concept of Operaé:ion

= - gme . an

Operations Verineation: Maintenance

) Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, _

Detailed Test, and Project
Design Verification Test and

Integration

Implamentation

Time >

e Like the Waterfall model, it is a linear model

* Requirements are expected not to change

* Due to the V-shape, the first tests are the implementation tests
e Unlike the waterfall model, every integration is tested

Thursday 22 November 12

Lightweight vs. Heavyweight Processes

Heavyweight Customizable Agile (Lightweight)
e.g., Waterfall model, Framework e.g., eXtreme
V-Process e.g., Programming (XP),
Unified SCRUM
Process (UP)
< >
Document driven Focus on
Elaborate workflow definitions * indiv./interactions rather than process/tools
Many different roles . working SWV rather than documentation
Many checkpoints * customer collaboration rather than contract
High management overhead . responding to change rather than the plan
Highly bureaucratic
- ~ Wuyts Roel
(MmeccC tricted 2007

Thursday 22 November 12

UP: Iterative and Incremental development

» jterative & incremental development: embracing change
— Essential for SW Development

(“No Silver Bullet”, Brooks, 1987)

o jterative models: can be iterative w.r.t. value and/or
requirements

i(mec e

Thursday 22 November 12

Iterative Development (a.k.a. incremental model

» More functionality with each release (new increment)
— Operational quality portion of product within weeks
* Non-incremental models (e.g. Waterfall)

— Operational quality complete product at end

Release |

Design Coding Test Deployment

Release 2

Design Coding Deployment

sjuswaJinbay

Release 3

Design Coding Test Deployment

" yts Roel | |
icted 2007

Talcle

Thursday 22 November 12

Incremental development (a.k.a. Evolutionary Mode

* New versions implement new and evolving requirements

Version |

Requirements Design (@feTe[[] Test Deployment

Requirements Design Coding Test Deployment

- feedback

Requirements Design Coding Test Deployment

Version 2

Version 3

imec o |12

Thursday 22 November 12

UP is Use-Case-Driven

-

» Use cases are concise, simple, and understandable by a wide range
of stakeholders

— End users, developers and acquirers understand functional requirements of the
system

» Use cases drive numerous activities in the process:
— Creation and validation of the design model
— Definition of test cases and procedures of the test model
— Planning of iterations
— Creation of user documentation

— System deployment

» Use cases help synchronize the content of different models

- Vl ts Roel
(MmccC ted 2007

Thursday 22 November 12

UP’s 4 Project Life Cycle Phases

Construction Transition

inception Elaboration

e Inception
— Approximate vision
— Business case
- Scope
— Vague estimates
— Continue or stop?
» Elaboration

— Identification of most
requirements

— Iterative implementation of
the core architecture

— resolution of high risks

Tlcle

Thursday 22 November 12

e Construction

time

— Iterative implementation of

lower risk elements

— Preparation for deployment

e Transition
— Beta tests

— Deployment

'ts Roel
12007

Iterations and Milestones

Preliminary Iter. #1 Iter. #2
Iteration

A % A
Milestone Release Final production
release

» each phase concludes with a well-defined milestone.
» phases consist of one or more iterations
— short fixed-length mini-projects (2 to 6 weeks)
— shift tasks to future iterations if necessary ...
— an iteration represents a complete development cycle

— outcome of each iteration: a tested, integrated and executable
lMmec

yts Roel
ted 2007 15

Thursday 22 November 12

The UP Disciplines

Focus of this
Phases course.

Process Disciplines Inception Elaboration Construction

Business Modeling

Requirements
Analysis & Design

Implementation el .
Test 5 .
Deployment ' ’

i

Supporting Disciplines
Configuration & Change Mgmt _-A

Project Management M

Environment L

Preliminary} lIter.| Iter. Iter I Ilter. | IterI Ilter. l Iter.
lteration(s) ¥ #1 #2 #n+1 1#n+20 #m | #m+1

Iterations
l m e C C restx\cl:l:g:iszpc\)%e;

Thursday 22 November 12

UP

» Advantages
— Incremental & Iterative

— Sits in between heavyweight and agile processes

e best of both worlds ?
— Customizable
» Potential pitfalls
— Use Cases do not model all requirements

- Hard to make really lightweight, even when customized

e Quite some documentation and process remains

i(mec 2007

Thursday 22 November 12

Lightweight vs. Heavyweight Processes

Heavyweight Customizable Agile (Lightweight)
e.g., Waterfall model, Framework e.g., eXtreme
V-Process e.g., Rational Programming (XP),
- Unified - SCRUM
Process (RUP)
< >
Document driven Focus on
Elaborate workflow definitions * indiv./interactions rather than process/tools
Many different roles . working SWV rather than documentation
Many checkpoints * customer collaboration rather than contract
High management overhead . responding to change rather than the plan
Highly bureaucratic
. ~ Wuyts Roel
I(MmecC icted 2007

Thursday 22 November 12

Agile Development

» Group of iterative and incremental software
methodologies

. The Agile Manifesto

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

- Wuyts Roel
lmeC astricted 2007 |9

Thursday 22 November 12

Extreme Programming (XP)

» Point of XP: coping with change and uncertainty

» Based on number of practices:
- small, frequent releases of the system
- full-time engagement of customer

— pair programming, collective ownership of the code,
sustainable development

— regular system releases, test-first development,
continuous integration

— constant refactoring, simplest thing that can work

IMecC | 20

Thursday 22 November 12

Driving Metaphor

e Driving a car is not about pointing the car in one
direction and holding to it; driving is about making
lots of little course corrections.

“Do the simplest thing that could possibly work”

imec o |

Thursday 22 November 12

Customer-Developer Relationships

» A well-known experience: The customer and the
developer sit in a boat in the ocean and are afraid of

each other
Customer fears Developer fears
They won't get what they asked for They won't be given clear definitions
of what needs to be done
They must surrender the control of They will be given responsibility

their careers to techies who don't care | without authority

They'll pay too much for too little They will be told to do things that
don't make sense

They won't know what is going on (the | They'll have to sacrifice quality for
plans they see will be fairy tales) deadlines

» Result: a lot of energy goes into protective measures
and politics instead of success

- Wuyts Roel
lmeC trjcted 2007 22

Thursday 22 November 12

The Customer Bill of Rights

To steer a project, you need to know what

You have the right to an overall plan can be accomplished within time and budget

You have the right to get the most

. The most valuable things are worked on
possible value out of every

. first.
programming week
You have the right to see progress in Only a running system can give exact
a running system. information about project state

You have the right to change your

mind, to substitute functionality and | Market and business requirements change.
to change priorities without We have to allow change.

exorbitant costs.

You have the right to be informed

about schedule changes, in time to | XP works to be sure everyone knows just

choose how to reduce the scope to what is really happening.
restore the original date.

IMecC | 23

Thursday 22 November 12

The Developer Bill of Rights

You have the right to know what is
needed, with clear declarations of
priority.

Tight communication with the
customer. Customer directs by value.

You have the right to produce quality | UnitTests and Refactoring help to keep
work all the time. the code clean

You have the right to ask for and
receive help from peers, managers, and
customers

No one can ever refuse help to a team
member

You have the right to make and update | Programmers know best how long it is

your owh estimates. going to take them
You have the right to accept your We work most effectively when we
responsibilities instead having them have accepted our responsibilities
assigned to you instead of having them thrust upon us
I(mec ad 2007 | 24

Thursday 22 November 12

Separation of Roles

o Customer makes business decisions

» Developers make technical decisions

Business Decisions Technical Decisions
Scope Estimates
Dates of the releases Dates within an iteration
Priority Team velocity
Warnings about technical risks

» The Customer owns “what you get” while the
Developers own “what it costs”.

- . Wuyts Roel
lmeC estricted 2007 25

Thursday 22 November 12

Describing XP

Values

Talcle

Thursday 22 November 12

Principles

Practices

" yts Roel
icted 2007

26

Basic XP Values

o Communication
— communicate problems&solutions, teamwork
o Simplicity
— eliminate wasted complexity
» Feedback
— change creates the need for feedback
» Courage
— effective action in the face of fear
» Respect
— care about you, the team, and the project

i(mec e

Thursday 22 November 12

Principles

* Humanity, Economics, Mutual Benefit, Self-Similarity,
Improvement, Diversity, Reflection, Flow,
Opportunity, Redudancy, Failure, Quality, Baby Steps,
Accepted Responsibility

o Will not detail them -- they govern what the practices
tend to accomplish

* S0, on to the practices!

Wuyts Roel

lmeC astricted 2007 28

Thursday 22 November 12

Primary Practices

o Sit Together e Ten Minute Build

* Whole Team o Continuous Integration
o Informative Workspace o Test-First Programming
* Energized Work » Incremental Design

e Pair Programming

» Stories

» Weekly Cycle

* Quarterly Cycle

» Slack

Tailcle e | 29

Thursday 22 November 12

Stories

» plan using units of customer-visible functionality

Name

Save cith Compression ‘8 Ars

estimate

Currently Che compression
oplions are 1n a dial =%
Saéée?aenz‘ Zo Che Save
dia/ og. Make Cherr pard of

Che save dialog itself index card

short description
i(mec

- Wuyts Roel
s 2007 | 30

Thursday 22 November 12

Another example

__42“3- _5‘{’}(““3 La- f”‘dﬁd.‘)& /“'QL? f%

——— - — . — — ——— 2 ——— .)] — —— 0 — 8 S— . —— — 1 - -— - - . - - e —— | ——— -
- ——— e e = - -— — — — —
- — —— ————
-— — - —— — ——— —— —
————— — -— -_— — — —— e — ———

lmec Roe

31

Thursday 22 November 12

/ more User Stories

o Students can purchase monthly parking passes
online.

» Parking passes can be paid via credit cards.

o Parking passes can be paid via PayPal ™.

o Professors can input student marks.

» Students can obtain their current seminar schedule.

o Students can only enroll in seminars for which they
have prerequisites.

» Transcripts will be available online via a standard
browser.

: -- Wuyts Roel
l m e C restricted 2007 32

Thursday 22 November 12

Sit Together

-

» Develop in an open space big enough for the team

IMecC | 33

Thursday 22 November 12

Informative Workspace

» Workspace = about your work

— 15 seconds to convey how project is going

— shows important, active information

— drinks & snacks available, and clean

-done - this week — this release —
= T o

I_j'.

—to be estimated —— future
A

Tlcle

Thursday 22 November 12

- Wuyts Roel

ricted 2007
A

34

Pair Programming

» Write all production programs with two people sitting
at one machine

- make enough room, move keyboard and mouse
e Pair programmers:

— keep each other on task

— brainstorm refinements to the system

— clarify ideas

— take initiative when partner is stuck (less frustration)

- hold each other accountable to practices

IMecC | 35

Thursday 22 November 12

Pair programming and privacy

» Sometimes you might need some privacy
- then go work alone

— come back with the idea (NOT the code)

e quickly reimplemented with two

e benefits the whole team, not you alone

Tlcle

Thursday 22 November 12

5 Roel
2007

36

Pair Programming

» Rotate pairs frequently

— every couple of hours, at natural breaks in
development

— with a timer, every 60 minutes (or 30 minutes for
difficult problems)

Tlcle

Thursday 22 November 12

Roel
007

37

Pair Programming and Personal Space

» Not everybody likes to sit close!

» Observe personal hygiene and health

» Sexual feelings are not in best interest of the team
- even when mutual

» When uncomfortable pairing with somebody, talk
about it with someone safe

— chances are that you are not the only one

— everybody needs to feel comfortable

) Wuyts Roel

imec mcessos | 38

Thursday 22 November 12

Weekly Cycle

e Plan work one week at a time.

* Do this on a meeting at the begin of each week
1.Review progress.

2.Let customers pick a week'’s worth of stories to
implement this week.

3.Break the stories into tasks. Team members sign up
for tasks and estimate them.

o Start writing tests that will run when the stories are
completed

imec sty | 39

Thursday 22 November 12

Ten-Minute Build

» Automatically build the whole system and run all of
the tests in ten minutes

- longer: will not be used (and errors result)
— shorter: not enough time to drink coffee
» Note: if it takes longer than 10 minutes:
— maybe only rebuild changed part or test changes

— But: introduces errors. Only do this when necessary

o Lowers stress: "Did we make a mistake? Let's see.”

ImecC ictea 2007 | 40

Thursday 22 November 12

Continuous Integration

» Team Programming = Divide, Conquer, Integrate

» Integrate and test changes after no more than a
couple of hours

— integration typically takes long

— when done at the end, risks the whole project when
integration problems are discovered

- the longer you wait, the more it costs and the more
unpredictable it becomes

lmec icea 2007 | 4]

Thursday 22 November 12

Using Continuous Integration

e Synchronous
— After a task is finished, you integrate and run the tests
- Immediate feedback for you and your partner

* Asynchronous

- After submitting changes, the build system notices
something new, builds and tests the system, and gives
feedback by mail, notification, etc.

— Feedback typically comes when a new task is started

— Pair programmers might have been switched already

i(mec e

Thursday 22 November 12

Test-first Programming

» Write a failing automated test before changing code

*» Addresses many problems:

— Scope creep: focus coding by what the code should do,
not on the “just in case” code

— Coupling and cohesion: If it's hard to write a test,
there is a design problem (not a testing problem)

— Trust: clean working code + automated tests

- Rhythm: gives focus on what to do next

o efficient rhythm: test, code, refactor, test, ...

IMecC | 43

Thursday 22 November 12

Incremental Design

e Invest in the design of the system every day. Strive
to the design of the system an excellent fit for the
needs of the system that day

— Completely opposite to lots of other practices

o Waterfall and similar approaches
o Can work with XP because of the other practices
- Automated tests, continuous integration, ...
*» Note: you need to invest in design!

- not just implement story after story after story...

: ~ Wuyts Roel
imec ey | 44

Thursday 22 November 12

Corollary Practices

» Real Customer » Daily Deployment

Involvement _
» Negotiated Scope

e Incremental Contract
Deployment

* Pay-Per-Use
* Team Continuity
* Shrinking teams
» Root-Cause Analysis
» Shared Code
» Code and Tests

» Single Code Base
imec iz | 45

Thursday 22 November 12

Stages in XP Project

» Initiation
— User Stories

» Release Planning

» Release (each Release is typically 1 -6 months)
— Iteration 1 (typically 1 -3 weeks)

— Iteration 2

— Iteration n

Tlcle

Thursday 22 November 12

s Roel
2007

XP

» Advantages
— works well for small teams
— low process overhead, lean & mean
» Potential pitfalls
- no documented compromises of user conflicts
— lack of an overall design specification or document

— can be hard to fit in organizations/workflows

imec -

47

Thursday 22 November 12

Conclusion

» A software development methodology is
e a set of partially ordered steps

e to build, deploy, maintain, ... software
» Many methodologies exist
— each with trade-offs
— pick the one according to your needs
e project size
e project partners

e development team(s)

e outside constraints (legislation, domain constraints, ...)

Tlcle

Thursday 22 November 12

'ts Roel

12007

